基于改进蚁群算法的多自主式水下机器人任务分配

Task allocation of multiple autonomous underwater vehicles based on improved ant colony algorithm

  • 摘要:
      目的  以多自主式水下机器人(MAUV)执行海底地形勘察任务为背景,提出一种基于改进蚁群算法的MAUV最优任务分配算法。
      方法  首先,建立任务分配问题模型;然后,针对基本蚁群算法进行改进。改进的蚁群由多个子群组成,通过对任务执行能力蚂蚁的选择方法、启发函数和全局信息素更新方式进行改进,以此提高算法的自适应能力和全局搜索能力,并在局部搜索中通过2-opt算法进一步加快最优解的收敛速度。
      结果  Matlab仿真结果表明,改进的蚁群算法可以有效提高MAUV的任务分配效率,从而快速地平衡航行距离和能耗代价。
      结论  研究成果可为MAUV海底地形勘察任务分配提供参考。

     

    Abstract:
      Objectives  With the submarine topographic survey mission of the Multiple Autonomous Underwater Vehicles (MAUV) as the background, the optimal task allocation method of MAUV is proposed on the basis of an improved ant colony algorithm.
      Methods  The task allocation model is first established and the basic ant colony algorithm subsequently improved. The improved ant colony consists of multiple groups. In order to enhance the adaptive and global search ability of the algorithm, the ant selection method of the remaining task execution capability, new heuristic function and updated global pheromone method are improved. In local searches, the convergence rate of the optimal solution is further accelerated by the 2-opt algorithm.
      Results  The Matlab simulation results show that the improved ant colony algorithm can effectively improve the task allocation efficiency of MAUV while also providing a good balance between the distance of the voyage and the cost of the consumption.
      Conclusions  This article can provide references for submarine topographic survey mission assignment in real environments.

     

/

返回文章
返回