两级双转子对置式离心压气机气动设计和强度校核

Aerodynamic design and strength check of a two-stage dual-rotor opposed centrifugal compressor

  • 摘要:
      目的  为完成某小型燃气轮机用两级双转子对置式离心压气机设计,
      方法  将Concepts NREC和Nu-meca软件相结合,对两级双转子对置式离心压气机气动设计和三维流场进行校核;叶轮选取0Cr17Ni4Cu4Nb材料,采用ANSYS软件在线弹性范围内分析及校核离心叶轮强度和振动特性。
      结果  气动设计结果表明,在设计流量点,两级离心压气机总压比为7.97,绝热效率为80.39%,稳定裕度为17.2%。强度和振动分析结果表明,叶轮静强度满足材料强度要求;根据"三重点"共振理论,两级离心叶轮均无共振危险。
      结论  得到了同时满足气动、强度和振动要求的高压比、高效率和宽稳定裕度两级离心压气机设计方案,可为小型燃气轮机设计和技术集成、试验测试等提供基础支撑。

     

    Abstract:
      Objectives  To accomplish the design of a two-stage dual-rotor opposed centrifugal compressor for a small gas turbine,
      Methods  the compressor is subject to aerodynamic design and three-dimensional flow field check by using the software Concepts NREC and the Numeca. The impeller is made of 0Cr17Ni4Cu4Nb. The strength and vibration characteristics of the centrifugal impeller are analyzed and checked with the ANSYS within the linear elasticity range.
      Results  The aerodynamic design results show that the total pressure ratio of the two-stage centrifugal compressor at design mass flow rate is 7.97, the adiabatic efficiency is 80.39% and the stability margin is 17.2%. The results of strength and vibration analysis show that the impeller strength meets material strength requirements. According to the "triple point" resonance theory, there are no risks of resonance vibration for the two-stage centrifugal impellers.
      Conclusions  A design scheme for the two-stage centrifugal compressor with high pressure ratio, high efficiency and wide stability margin is obtained, the compressor meeting the requirements for aerodynamics, strength and vibration, which can provide some fundamental support for the design, technology integration and test of a small gas turbine.

     

/

返回文章
返回