基于SMOTE算法和动态代理模型的船舶结构可靠性优化

Reliability-based design optimization of ship structure using SMOTE algorithm and dynamic surrogate model

  • 摘要:
      目的  针对传统船舶结构可靠性优化设计中难以同时保证全局近似精度与计算效率的问题,提出一种基于少数类合成的过采样算法(SMOTE)和动态代理模型的可靠性优化策略。
      方法  首先,通过最优拉丁超立方试验设计,在设计空间中选择初始样本点,构造BP神经网络模型;然后,利用全局优化算法−模拟退火法(ASA)和可靠性优化设计的单循环法(SLA),找到当前全局最优解;最后,通过SMOTE算法增加最优解周围的样本点,更新代理模型以提高其在全局最优解附近的精度,直至优化迭代收敛。
      结果  结果显示,SMOTE算法可以合成位于失效面附近的样本点,从而使BP神经网络模型更高效地拟合极限状态函数;SLA法将可靠性优化问题解耦成确定性优化问题,在保持计算精度的同时提高了计算效率。
      结论  优化结果表明,采用所提方法在获得分析模型全局最优解的同时还能有效减少计算成本。

     

    Abstract:
      Objectives  Aiming at the problem that it is difficult to ensure global approximation accuracy and computational efficiency in the traditional reliability-based design optimization of ship structures, a reliability optimization strategy based on a dynamic surrogate is proposed.
      Methods   The BP nueral network surrogate is constructed with initial sampling points generated by the optimal Latin hypercube design method. The global optimization algorithm and single loop method (SLA) of the reliability optimization design are used to find the current global optimal solution. The sample points around the optimal solution are then added using the synthetic minority over-sampling technique (SMOTE), and the surrogate is updated to improve its accuracy near the global optimal solution until the optimization iteration converges.
      Results  The SMOTE algorithm can synthesize the sample points located near the failure surface so that the surrogate fits the limit state function efficiently; the SLA decouples the reliability optimization problem into a deterministic optimization problem, improving calculation efficiency while maintaining calculation accuracy.
      Conclusions  This optimization method is validated using a mathematical problem and ship structure reliability optimization. The optimization results show that the method can effectively reduce the calculation cost while obtaining the global optimal solution of the analysis model.

     

/

返回文章
返回