Abstract:
Objectives In order to study the damage characteristics of a typical cabin explosion load on stiffened plates, the explosion load in a cabin is divided into the initial explosion shock wave load and quasi-static air pressure load, finite element analysis software LS-DYNA is used to simulate and calculate the damage characteristics of fixed stiffened plates under the explosive load.
Methods In this paper, the deformation characteristics of the stiffened plate under the same impulse and peak load are simulated, and the damage characteristics of the stiffened plate under the initial explosion shock wave load, quasi-static air pressure load and the combined action of the two loads are analyzed.
Results The results show that when the impulse acting on the stiffened plates is equal and the load action time is less than 0.05 times the vertical first-order natural vibration period, the final deflection value of the stiffened plates is near the maximum value. When the load peaks are equal, there is a saturation impulse value, after which the loading time no longer affects the final deformation of the stiffened plates.
Conclusions The final deformation of stiffened plates under an explosion load in a cabin is not a simple superposition under the action of two loads; the combined effect of the two loads enhances their damage.