基于加权信息增益的并行融合AUV协同定位方法

A Parallel fusion method for AUV cooperative localization based on weighted information gain

  • 摘要:
      目的  为提高杂波干扰下自主水下航行器(AUV)集群系统在协同定位过程中的全局定位精度,提高定位信息的实时性,提出一种以信息增益为评价标准的局部信息融合算法。
      方法  通过阈值加权方法对观测数值进行粗差改善,进行局部信息滤波,优化观测值以使其更接近于真实值。从信息熵理论的角度考察各量测信息的可靠性,对多台主AUV的多组局部滤波信息进行优化。以信息增益为融合权值指标,融合多组局部滤波结果,生成唯一的被测从AUV定位信息。进一步地,考虑到主、从AUV之间的声呐探测以及水声信号的通信延时特性,局部信息滤波与信息增益融合算法会出现滤波数据异步的问题,提出一种局部信息滤波和信息增益加权方法的并行结构,通过实时更新机制,确保信息加权算法的输入值为最新时刻的局部滤波输出值。
      结果  仿真实验结果表明,相较于多源局部滤波信息,所提融合方法能够有效降低局部滤波误差,提高定位精度,对局部滤波有进一步的优化作用。
      结论  所提融合方法可有效实现多AUV系统的协同定位能力。

     

    Abstract:
      Objectives  In order to improve the global localization accuracy and the real-time localization information in the cooperative localization of the autonomous underwater vehicle (AUV) system under clutter interference, a local information fusion algorithm based on information gain is proposed.
      Methods  The gross error of the observed value is improved by the threshold weighting method, and then the local information is filtered to optimize the observed value so that it is closer to the true value. In this paper, the reliability of each piece of measurement information is investigated from the information entropy theory, and multiple sets of local filtering information of multiple master underwater vehicles are optimized. Taking the information gain as the weight, multiple sets of filtering results are fused to generate the unique localization information of the tested slave AUV. Furthermore, due to the communication delay in sonar detection and underwater acoustic signals between master and slave AUVs, filtering data asynchrony may occur in local information filtering and the information gain fusion algorithm. In view of this, a parallel structure of local information filtering and information gain weighting is proposed, which utilizes a real-time update mechanism to ensure that the input values of the information weighting algorithm are the latest output values of local filtering.
      Results  The simulation results show that compared with multi-source local filtering information, the proposed fusion method can effectively reduce the absolute error of local filtering, improve the localization accuracy, and optimize the local filtering.
      Conclusions  The proposed fusion method can effectively realize the cooperative localization of the multi-AUV system.

     

/

返回文章
返回