基于动态特征融合的船舶柴油机进排气系统故障诊断

Fault diagnosis of marine diesel engine intake and exhaust system based on dynamic feature fusion

  • 摘要:
      目的  船舶系统由多设备的复杂机构组成,各组件参数具有动态性和非线性的特点,所以故障诊断过程复杂。为提高诊断效率,提出一种动态特征融合方法。
      方法  利用分形理论、动态理论及核主元分析(KPCA)法对系统状态数据进行重构、映射及筛选,得到主元特征数据矩阵,求得平方预测误差(SPE)及相应的控制限,构建出基于船舶柴油机进排气系统健康数据的离线监测模型,利用该模型对系统进行故障诊断分析。为验证模型的有效性,选取某船舶柴油机进排气系统的故障数据进行验证分析。
      结果  结果表明,动态特征融合分析方法可有效实现对系统动态非线性状态数据的精确分析,实现对系统故障的高效分析和诊断。与KPCA及支持向量机(SVM)方法相比,所提方法具有更好的故障诊断性能。
      结论  该方法可实现船舶柴油机进排气系统故障的检测和诊断,提升系统运行的可靠性和安全性。

     

    Abstract:
      Objective  A ship's system is a complex mechanism composed of multiple pieces of equipment. Due to the dynamic and non-linear characteristics of the parameters of each component, fault diagnosis is complicated. This paper proposes a dynamic feature fusion method for performing efficient fault diagnosis on the system.
      Methods  Fractal theory, dynamic theory and the kernel principal component analysis (KPCA) method are used to reconstruct, map and filter the system state data, and obtain the principal component characteristic data matrix, square prediction error (SPE) and corresponding control limits. An offline monitoring model based on the health data of a marine diesel engine intake and exhaust system is then constructed and used to diagnose and analyze ship system faults. In order to verify the validity of the model, the fault data of the intake and exhaust system of a marine diesel engine is selected for verification and analysis.
      Results  The results show that this method can effectively realize the accurate analysis of a system's dynamic nonlinear state data and efficient analysis and diagnosis of faults, with better fault diagnosis performance than the KPCA and support vector machine (SVM) method.
      Conclusions  The method proposed in this paper can realize the detection and diagnosis of marine diesel engine intake and exhaust system failures, and improve the reliability and safety of system operation.

     

/

返回文章
返回