MITD-YOLO:改进YOLOv8n的海上红外目标检测方法

MITD-YOLO: an improved YOLOv8n-based method for maritime infrared target detection

  • 摘要:
    目的 海上红外图像背景复杂、目标尺寸变化大、海浪杂波干扰严重,容易导致目标漏检和误检。为提高红外图像中的目标检测准确率,提出一种基于YOLOv8n的海上红外目标检测方法——面向海上红外目标检测任务的YOLO(MITD-YOLO)。
    方法 首先引入多样化分支模块(DBB)和多尺度卷积(EMSConv)利用多个不同尺度的卷积使模型能够更好的捕捉复杂特征,采用三重注意力机制(triple attention)实现空间和通道维度的特征交互,强化关键特征提取,并使用Powerful-IoUv2(PIoUv2)对原模型的损失函数进行改进,以解决锚框扩展问题,提高检测精度并增强模型的鲁棒性。
    结果 实验结果表明,改进MITD-YOLO模型对海上红外图像目标的检测效率有所提升,准确率提升2.3%,召回率提升1.7%;平均准确率达88.9%,FPS达到132.8,优于原模型。
    结论 该方法可提高海上红外目标检测效果,为海上安全监控和船舶导航等领域提供更可靠的目标检测技术,助力智能海洋系统发展。

     

    Abstract:
    Objective Complex backgrounds, significant target size variations, and severe sea clutter in maritime infrared imagery often result in missed or false detections. To address this challenge, an improved method based on YOLOv8n, termed maritime infrared target detection-YOLO (MITD-YOLO), is proposed to enhance target detection accuracy in maritime infrared images.
    Method MITD-YOLO incorporates a diverse branch module (DBB) and enhanced multi-scale convolution (EMSConv) to leverage multi-scale convolutions, enabling the model to more effectively capture complex features. A triple attention mechanism is employed to facilitate spatial and channel-wise feature interaction, thereby improving key feature extraction. Additionally, the Powerful-IoUv2 (PIoUv2) loss function is introduced to address the anchor box expansion problem, leading to improved detection accuracy and enhanced model robustness.
    Results Experimental results show that the improved model significantly enhances the efficiency of maritime infrared target detection, with a 2.3% increase in precision and a 1.7% increase in recall. The model achieves an average precision of 88.9%, and 132.8 FPS, outperforming the original model.
    Conclusion MITD-YOLO enhances maritime infrared target detection performance and provides a more reliable target detection technology for applications such as maritime surveillance and ship navigation, contributing to the advancement of intelligent maritime systems.

     

/

返回文章
返回