基于仿射变换的无人艇分布式协同机动目标跟踪控制

Distributed cooperative maneuvering target tracking control of unmanned surface vehicles based on affine transformation

  • 摘要: 【目的】针对不规则水域环境下对无人艇集群系统的队形描述能力和机动性要求,基于仿射变换提出了一种分布式协同机动目标跟踪控制方法。【方法】首先,针对无人艇欠驱动系统无相对度的问题,提出了基于输出重定义的动态转换方法,简化了控制方法设计。然后,设计了分布式目标速度观测器估计目标未知速度。基于目标速度观测值,结合仿射变换理论和自适应反步控制技术设计了分布式目标跟踪控制方法,实现了对动态目标的机动跟踪。结合最小参数学习法与径向基神经网络技术设计自适应律,解决了无人艇模型不确定性和外界复杂干扰问题。【结果】通过仿真实验结果表明,所提控制方法可以在不规则水域环境实现对动态目标的稳定跟踪。并且,当目标穿越狭窄地形时,无人艇集群系统可灵活调整队形避开障碍物,体现出强大的控制性能和灵活性。【结论】所提控制方法通过仿射变换提高了无人艇集群系统的灵活性,实现了对动态目标的仿射机动跟踪,提高了其在不规则水域执行跟踪任务时的安全性,对无人艇目标跟踪控制技术的进一步发展具有重要意义。

     

    Abstract: Objectives To address the requirements of formation description and maneuverability for multiple unmanned surface vehicle (USV) systems in irregular working environments, a distributed cooperative maneuvering target tracking control method is proposed based on affine transformation. Methods First, a novel output redefinition-based dynamic transformation method is proposed to resolve the lack of relative degree in underactuated USV systems, thereby simplifying control design. Subsequently, a distributed target velocity observer is designed to estimate the unknown velocity of moving targets. Leveraging the estimated target velocity, a distributed target tracking control strategy is developed by combining affine transformation theory and backstepping control technology to achieve maneuverable tracking of moving targets. To address unknown model parameters and external disturbances, an adaptive law combining the minimal learning parameter (MLP) technique and radial basis function neural network (RBFNN) is designed for online estimation. Results Simulation results demonstrate that the proposed control method achieves effective tracking of moving targets in irregular working environments. When targets traverse narrow passages, the multiple USV system flexibly adjusts its formation to avoid obstacles, exhibiting robust control performance and flexibility. Conclusions The proposed affine transformation-based control method enhances the flexibility and safety of multiple USV systems in moving target tracking tasks within irregular working environments. This work provides a significant advancement in distributed cooperative control strategies for multiple USV systems, with practical implications for maritime surveillance and rescue operations.

     

/

返回文章
返回