WANG R H, CHEN H, GUAN C. Condition monitoring method for marine engine room equipment based on machine learning[J]. Chinese Journal of Ship Research, 2021, 16(1): 158–166, 192. DOI: 10.19693/j.issn.1673-3185.02150
Citation: WANG R H, CHEN H, GUAN C. Condition monitoring method for marine engine room equipment based on machine learning[J]. Chinese Journal of Ship Research, 2021, 16(1): 158–166, 192. DOI: 10.19693/j.issn.1673-3185.02150

Condition monitoring method for marine engine room equipment based on machine learning

More Information
  • Received Date: October 19, 2020
  • Revised Date: November 15, 2020
  • Available Online: December 23, 2020
© 2021 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  In order to realize the intelligent condition monitoring of marine engine room equipment, machine learning algorithms are introduced and a condition monitoring method based on manifold learning and an isolation forest is proposed.
      Methods  As condition-monitoring data is multi-dimensional, the proposed method extracts useful features through manifold learning, thereby reducing the dimensions and complexity of the raw data. An isolation forest algrithm is introduced to utilize the normal condition data to train and construct multiple sub forest detectors, realizing the fault monitoring of the target equipment. To validate the proposed scheme, a two-stroke marine diesel engine was developed in Matlab/Simulink to simulate reliable normal and fault condition datasets.
      Results  Comparisons of the simulated datasets of the different fault monitoring schemes demonstrate that the proposed method has a highest fault detection rate of 98.5% and lowest false alarm rate of 3%.
      Conclusions  The method proposed in this study improves the fault monitoring performance of marine equipment.
  • [1]
    ELAMIN F, FAN Y B, GU F S, et al. Diesel engine valve clearance detection using acoustic emission[J]. Advances in Mechanical Engineering, 2010, 2: 495741. doi: 10.1155/2010/495741
    [2]
    KOWALSKI J, KRAWCZYK B, WOŹNIAK M. Fault diagnosis of marine 4-stroke diesel engines using a one-vs-one extreme learning ensemble[J]. Engineering Applications of Artificial Intelligence, 2017, 57: 134–141. doi: 10.1016/j.engappai.2016.10.015
    [3]
    CHEN H, ZHANG Z H, GUAN C, et al. Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship[J]. Energy, 2020, 197: 117285.
    [4]
    宫文峰, 陈辉, 张泽辉, 等. 基于改进卷积神经网络的滚动轴承智能故障诊断研究[J]. 振动工程学报, 2020, 33(2): 400–413.

    GONG W F, CHEN H, ZHANG Z H, et al. Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network[J]. Journal of Vibration Engineering, 2020, 33(2): 400–413 (in Chinese).
    [5]
    宫文峰, 陈辉, 张美玲, 等. 基于深度学习的电机轴承微小故障智能诊断方法[J]. 仪器仪表学报, 2020, 41(1): 195–205.

    GONG W F, CHEN H, ZHANG M L, et al. Intelligent diagnosis method for incipient fault of motor bearing based on deep learning[J]. Chinese Journal of Scientific Instrument, 2020, 41(1): 195–205 (in Chinese).
    [6]
    尚前明, 王瑞涵, 陈辉, 等. 多信息融合技术在船舶柴油机故障诊断中的应用[J]. 中国航海, 2018, 41(3): 26–31. doi: 10.3969/j.issn.1000-4653.2018.03.006

    SHANG Q M, WANG R H, CHEN H, et al. Application of multi-information fusion technology for fault diagnosis in marine diesel engine[J]. Navigation of China, 2018, 41(3): 26–31 (in Chinese). doi: 10.3969/j.issn.1000-4653.2018.03.006
    [7]
    GONG W F, CHEN H, ZHANG Z H, et al. A data-driven-based fault diagnosis approach for electrical power DC-DC inverter by using modified convolutional neural network with global average pooling and 2-D feature image[J]. IEEE Access, 2020(8): 73677–73697. doi: 10.1109/ACCESS.2020.2988323
    [8]
    仲国强, 贾宝柱, 肖峰, 等. 基于深度信念网络的船舶柴油机智能故障诊断[J]. 中国舰船研究, 2020, 15(3): 136–142, 184.

    ZHONG G Q, JIA B Z, XIAO F, et al. Intelligent fault diagnosis of marine diesel engine based on deep belief network[J]. Chinese Journal of Ship Research, 2020, 15(3): 136–142, 184 (in Chinese).
    [9]
    刘国强, 林叶锦, 张志政, 等. 基于粗糙集和优化DAG-SVM的船舶主机故障诊断方法[J]. 中国舰船研究, 2020, 15(1): 68–73.

    LIU G Q, LIN Y J, ZHANG Z Z, et al. Main marine engine fault diagnosis method based on rough set theory and optimized DAG-SVM[J]. Chinese Journal of Ship Research, 2020, 15(1): 68–73 (in Chinese).
    [10]
    KONAR P, CHATTOPADHYAY P. Bearing fault detection of induction motor using wavelet and support vector machines (SVMs)[J]. Applied Soft Computing, 2011, 11(6): 4203–4211. doi: 10.1016/j.asoc.2011.03.014
    [11]
    BICEGO M, FIGUEIREDO M A T. Soft clustering using weighted one-class support vector machines[J]. Pattern Recognition, 2009, 42(1): 27–32. doi: 10.1016/j.patcog.2008.07.004
    [12]
    DIEZ-OLIVAN A, PAGAN J A, SANZ R, et al. Data-driven prognostics using a combination of constrained K-means clustering, fuzzy modeling and LOF-based score[J]. Neurocomputing, 2017, 241: 97–107. doi: 10.1016/j.neucom.2017.02.024
    [13]
    ZHANG L W, LIN J, KARIM R. An angle-based subspace anomaly detection approach to high-dimensional data: with an application to industrial fault detection[J]. Reliability Engineering & System Safety, 2015, 142: 482–497.
    [14]
    李新鹏, 高欣, 阎博, 等. 基于孤立森林算法的电力调度流数据异常检测方法[J]. 电网技术, 2019, 43(4): 1447–1456.

    LI X P, GAO X, YAN B, et al. An approach of data anomaly detection in power dispatching streaming data based on isolation forest algorithm[J]. Power System Technology, 2019, 43(4): 1447–1456 (in Chinese).
    [15]
    张俊, 王杨, 李坤豪, 等. 基于流形学习的多源传感器体域网数据融合模型[J]. 计算机科学, 2020, 47(8): 323–328.

    ZHANG J, WANG Y, LI K H, et al. Multi-source sensor body area network data fusion model based on manifold learning[J]. Computer Science, 2020, 47(8): 323–328 (in Chinese).
    [16]
    MALM L A, ENSTRM J, HULTMAN A. Main engine damage study[EB/OL]. [2020-10-16]. http://www.swedishclub.com.
    [17]
    GUAN C, THEOTOKATOS G, ZHOU P L, et al. Computational investigation of a large containership propulsion engine operation at slow steaming conditions[J]. Applied Energy, 2014, 130: 370–383. doi: 10.1016/j.apenergy.2014.05.063
  • Related Articles

    [1]LI Weibo, GAO Feng, XIAO Peng, HUANG Kangzheng, RUAN Daojie, GAO Junzhuo. Fault diagnosis of ship diesel power distribution system based on WOA-RF algorithm[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04193
    [2]Contrastive Learning and Convolution Transformer Network-based Reducer Fault Diagnosis Method[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04312
    [3]FU Shibo, WANG Yecheng, PU Huayan, LUO Jun, WANG Min. Shipboard transducer vibration isolation based on stiffness compensation and eddy current damping[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03743
    [4]LI Xuejian, QIN Bin, XIAO Yifeng, FU Zekun. An improved random forest-Monte Carlo method and application for structural reliability analysis of A-type independent liquid tank support structure[J]. Chinese Journal of Ship Research, 2022, 17(1): 147-153. DOI: 10.19693/j.issn.1673-3185.02181
    [5]ZHONG Guoqiang, JIA Baozhu, XIAO Feng, WANG Huaiyu. Intelligent fault diagnosis of marine diesel engine based on deep belief network[J]. Chinese Journal of Ship Research, 2020, 15(3): 136-142, 184. DOI: 10.19693/j.issn.1673-3185.01551
    [6]ZHOU Haijun, WANG Chaowei, ZHOU Guojing, ZHOU Bo. Fault diagnosis of antifriction bearing of centrifugal pump based on random forest[J]. Chinese Journal of Ship Research, 2020, 15(3): 129-135. DOI: 10.19693/j.issn.1673-3185.01646
    [7]YOU Caixia, ZHANG Guangde, HE Xuesong, HU Li. The Calculation Method of the Isolation System Based on the Improved FBS Theory[J]. Chinese Journal of Ship Research, 2015, 10(1): 109-113. DOI: 10.3969/j.issn.1673-3185.2015.01.016
    [8]ZHANG Genglin, YANG Deqing, ZHU Jinwen. Performance Analysis of a Novel Marine Honeycomb Vibration Isolator[J]. Chinese Journal of Ship Research, 2013, 8(4): 52-58. DOI: 10.3969/j.issn.1673-3185.2013.04.009
    [9]Liu Minlin, Liu Boyun, . Establishment and Optimization of State Feature System of Diesel Engine Fault Diagnosis[J]. Chinese Journal of Ship Research, 2010, 5(3): 47-51. DOI: 10.3969/j.issn.1673-3185.2010.03.011
    [10]Liu Shiming, Cao Yu, Luo yin, Zhang Aman. Numerical Simulation on Shock Isolation Characteristics of Ship Equipment[J]. Chinese Journal of Ship Research, 2010, 5(3): 38-42. DOI: 10.3969/j.issn.1673-3185.2010.03.009
  • Other Related Supplements

  • Cited by

    Periodical cited type(31)

    1. 黄滔,董舟,李文荣. 基于船岸通讯的智能机舱架构技术研究. 中国水运. 2024(01): 20-26 .
    2. 田纪云,袁扬,黄学卫,宁海强. 康明斯柴油机故障诊断专家系统关键技术的设计与实现. 船电技术. 2024(04): 9-12 .
    3. 田习文. 基于数字孪生技术的工业机器人状态监测方法. 中国高新科技. 2024(03): 23-25 .
    4. 李星贤,肖文,张斌,龚梅杰,陈辉. 基于数据均衡化的船舶涡轮增压系统故障诊断. 武汉理工大学学报(交通科学与工程版). 2024(03): 453-458 .
    5. 黄滔,陈冬梅,杨勇兵. 船舶柴油机运行参数异常检测及分析. 船海工程. 2024(04): 66-70 .
    6. 梁聚伟,李东亮,陈焰恺,耿江华. 基于LSTM阈值法的蒸汽动力辅助系统故障预警研究. 舰船科学技术. 2024(13): 150-157 .
    7. 马勇,胡祖硕,王雯琦,常兴山,严新平. 船用智能设备与系统的发展现状与展望. 机械工程学报. 2024(20): 181-192 .
    8. 姜俊颖. 基于物联网技术的船舶危险货物监测系统. 舰船科学技术. 2023(02): 171-174 .
    9. 赵子晗,段同乐,张冬宁. 基于滑动窗口的直升机序列异常检测算法. 计算机测量与控制. 2023(02): 41-47+54 .
    10. 贺喆,王大翊,高宁. 舰船信息系统装备质量数据智能采集与分析技术研究. 计算机测量与控制. 2023(02): 178-184 .
    11. 杨青,吴松丽. 基于大数据挖掘的船舶通信系统关键设备状态分析. 舰船科学技术. 2023(05): 136-139 .
    12. 郑鑫,陈辉,管聪,王瑞涵. 基于SVM-BP集成学习的舰船蒸汽动力系统故障诊断. 舰船科学技术. 2023(05): 97-101 .
    13. 刘亚飞,周行,吴学敏. 基于RFID技术的船舶电子故障分类编目系统. 舰船科学技术. 2023(13): 174-177 .
    14. 李辉燕,肖新华. 无人船远程遥控系统运行状态实时在线监测方法. 舰船科学技术. 2023(17): 83-86 .
    15. 张婷婷,张冬霞,潘红娜. 基于无线网络的船舶电气设备过热监测系统. 舰船科学技术. 2023(24): 180-183 .
    16. 张磊,吴雨欣,王耀泽. 基于自监督记忆自适应的振动筛状态识别方法. 煤炭工程. 2023(S1): 206-212 .
    17. 殷达,汪望明,刘静. 耙吸式挖泥船日志系统数据后处理程序开发. 水运工程. 2022(01): 165-168 .
    18. 吴德阳,都劲松. 基于机器学习的船舶柴油机异常点检测技术研究. 内燃机与配件. 2022(08): 81-85 .
    19. 陈冬梅,赵思恒,魏承印,陈亚杰. 船舶柴油机状态监测及预测性维护研究及应用. 中国机械工程. 2022(10): 1162-1168 .
    20. 甘杜芬,陈小海. 基于粒子群优化算法的舰船故障点智能定位研究. 舰船科学技术. 2022(10): 159-162 .
    21. 庄敏,张玲玲. 舰船机械状态监测特征参数选取系统. 舰船科学技术. 2022(12): 104-107 .
    22. 季禹,安亮. 舰船机舱状态数据采集与访问系统设计. 舰船科学技术. 2022(16): 118-121 .
    23. 胡继敏,罗梅杰. 基于自监督学习框架的发电柴油机故障诊断. 船电技术. 2022(09): 19-24 .
    24. 王瑞涵,陈辉,管聪,黄梦卓. 基于图卷积网络的非均衡数据船舶柴油机故障诊断. 中国舰船研究. 2022(05): 289-300 . 本站查看
    25. 许萌萌,张成伟,梅顺峰,刘子杰,栾天宇. 基于数据大脑的船岸一体机舱智能运维系统研究设计. 中国舰船研究. 2022(06): 79-87 . 本站查看
    26. 赵思恒,周航,周少伟. 基于维纳过程的船舶柴油机增压器寿命预测. 中国舰船研究. 2022(06): 126-132 . 本站查看
    27. 张泽辉,管聪,高航,高铁杠,陈辉. 面向船联网的高效隐私保护联邦学习方法. 中国舰船研究. 2022(06): 48-58 . 本站查看
    28. 徐亮,郭力峰,钟琮玮,钱勤标. 无人舰船机舱智能化技术应用探析. 中国舰船研究. 2022(06): 15-21+47 . 本站查看
    29. 张涛,郜慧敏,喻繁振,杨琨. 基于润滑数值模型和状态参数的艉轴承性能衰变研究. 中国舰船研究. 2022(06): 133-140+147 . 本站查看
    30. 刘艳宾,陈光伟. 多传感器信息融合的船舶机械设备状态智能检测研究. 舰船科学技术. 2022(23): 173-176 .
    31. 徐卫东,陈宇航. 一种基于LoRa的船舶机舱数据采集系统. 上海船舶运输科学研究所学报. 2021(03): 16-21 .

    Other cited types(13)

Catalog

    Article views (1601) PDF downloads (294) Cited by(44)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return