Citation: | FANG Z J, TAN J Z, JI G Y, et al. Tehnical development status and prospect of flexible sails of unmanned sailboats[J]. Chinese Journal of Ship Research, 2022, 17(4): 183–193. DOI: 10.19693/j.issn.1673-3185.02371 |
[1] |
BARS F L, JAULIN L. Robotic sailing 2013[C]//Proceedings of the 6th International Robotic Sailing Conference. Switzerland: Springer International Publishing, 2014.
|
[2] |
ALVES J C, CRUZ N A. Robotic sailing 2016[C]//Proceedings of the 9th International Robotic Sailing Conference. Castelo, Portugal: Springer Publishing Company, 2016.
|
[3] |
SCHILLAI S M, TOWNSEND N. Robotic sailing 2018[C]//11th International Robotic Sailing Conference 2018. Southampton, U. K. : Curran Associates, Inc. , 2018.
|
[4] |
ENQVIST T J. Undersökning av vingsegel-anordning för robotsegelbåt[D]. Hanseatic City of Lubeck: Högskolan på Åland–Åland University of Applied Sciences, 2016.
|
[5] |
INSIGHT M. Top 7 green ship concepts using wind energy[EB/OL]. 2017. (2018-10-26). https://www.marineinsight.com/green-shipping/top-7-green-ship-concepts-using-wind-energy/.
|
[6] |
SILVA M F, FRIEBE A, MALHEIRO B, et al. Rigid wing sailboats: a state of the art survey[J]. Ocean Engineering, 2019, 187: 106150. doi: 10.1016/j.oceaneng.2019.106150
|
[7] |
NEAL M, SAUZÉ C, THOMAS B, et al. Technologies for autonomous sailing: wings and wind sensors[C]//Proceedings of the 2nd IRSC. Matosinhos, Portugal, [s. n. ] 2009: 6−12.
|
[8] |
俞建成, 孙朝阳, 张艾群. 无人帆船研究现状与展望[J]. 机械工程学报, 2018, 54(24): 98–110. doi: 10.3901/JME.2018.24.098
YU J C, SUN Z Y, ZHANG A Q. Research status and prospect of autonomous sailboats[J]. Journal of Mechanical Engineering, 2018, 54(24): 98–110 (in Chinese). doi: 10.3901/JME.2018.24.098
|
[9] |
The history of SailBot[EB/OL]. (2021-03-01)[2021-04-15]. https://www.sailbot.org/.
|
[10] |
The history of the Microtransat[EB/OL]. (2020-11-20)[2021-04-15]. https://www.microtransat.org/history.php.
|
[11] |
The home of WRSC/IRSC[EB/OL]. (2020-12-15)[2021-04-15]. https://www.roboticsailing.org/index.html.
|
[12] |
SCHLAEFER A, BLAUROCK O. Robotic sailing[C]//Proceedings of the 4th International Robotic Sailing Conference. Berlin, Heidelberg: Springer Science & Business Media, 2011.
|
[13] |
MORGAN F, TYNAN D. Robotic sailing 2014[C]//Proceedings of the 7th International Robotic Sailing Conference. Switzerland, AG: Springer, 2015.
|
[14] |
STELZER R, JAFARMADAR K. History and recent developments in robotic sailing[M]//SCHLAEFER A, BLAUROCK O. Proceedings of the 4th International Robotic Sailing Conference on Robotic Sailing. Berlin, Heidelberg: Springer, 2011: 3–23.
|
[15] |
The technologies of ASV ROBOAT[EB/OL]. (2017-06-18) [2021-04-15]. http://www.roboat.at/technologie/technologie/.
|
[16] |
STELZER R, JAFARMADAR K. The robotic sailing boat ASV roboat as a maritime research platform[C]//Proceedings of 22nd International HISWA Symposium. Amsterdan, Netherland, 2012.
|
[17] |
STELZER R, DALMAU D E. A study on potential energy savings by the use of a balanced rig on a robotic sailing boat[M]//SAUZÉ C, FINNIS J. Proceedings of the 5th International Robotic Sailing Conference on Robotic Sailing 2012. Berlin, Heidelberg: Springer, 2013: 87–93.
|
[18] |
STELZER R. Autonomous sailboat navigation: novel algorithms and experimental demonstration [M]. Berlin, Germany: Lambert Academic Publishing, 2013.
|
[19] |
MILLER P H, HAMLET M, ROSSMAN J. Continuous improvements to USNA SailBots for inshore racing and offshore voyaging[M]//SAUZÉ C, FINNIS J. Proceedings of the 5th International Robotic Sailing Conference on Robotic Sailing 2012. Berlin, Heidelberg: Springer, 2013: 49–60.
|
[20] |
MILLER P, BEELER A, CAYABAN B, et al. An easy-to-build, low-cost, high-performance SailBot[M]//MORGAN F, TYNAN D. Proceedings of the 7th International Robotic Sailing Conference on Robotic Sailing 2014. Cham: Springer, 2015: 3–16.
|
[21] |
MILLER P, HODAPP P, PINCH R, et al. Correlation of velocity prediction program for small autonomous sailboats[M]//ØVERGÅRD K I. Proceedings of the 10th International Robotic Sailing Conference on Robotic Sailing 2017. Cham: Springer, 2018: 19–30.
|
[22] |
MARTIN D E, BECK R F. PCSAIL, a velocity prediction program for a home computer[C]//SNAME 15th Chesapeake Sailing Yacht Symposium. Annapolis, Maryland, USA: SNAME, 2001.
|
[23] |
MILLER P, SAUZÉ C, NEAL M. Development of ARRTOO: a long-endurance, hybrid-powered, oceanographic research vessel[M]//BARS F, JAULIN L. Proceedings of the 6th International Robotic Sailing Conference on Robotic Sailing 2013. Cham: Springer, 2014: 53–65.
|
[24] |
MaxiMOOP. (2017-05-16) [2021-04-15]. https://www.sailbot.org/maximoop/.
|
[25] |
MILLER P, HAMLET M, SAUZÉ C, et al. MaxiMOOP: a multi-role, low cost and small sailing robot platform[M]//MORGAN F, TYNAN D. Proceedings of the 7th International Robotic Sailing Conference on Robotic Sailing 2014. Cham: Springer, 2015: 17−30.
|
[26] |
SCHRÖDER C, HERTEL L. Development of a low-budget robotic sailboat[M]//BARS F, JAULIN L. Proceedings of the 6th International Robotic Sailing Conference on Robotic Sailing 2013. Cham: Springer, 2014: 13−24.
|
[27] |
ERCKENS H, BEUSSER G A, PRADALIER C, et al. Avalon: navigation strategy and trajectory following controller for an autonomous sailing vessel[J]. IEEE Robotics & Automation Magazine, 2010, 17(1): 45–54.
|
[28] |
GIGER L, WISMER S, BOEHL S, et al. Design and construction of the autonomous sailing vessel AVALON[C]//2nd World Robotic Sailing Championship and International Robotic Sailing Conference (WRSC & IRSC 2009). Matosinhos, Portugal: Eidgenössische Technische Hochschule Zürich, 2013.
|
[29] |
TRANZATTO M, LINIGER A, GRAMMATICO S, et al. The debut of Aeolus, the autonomous model sailboat of ETH Zurich[C]//OCEANS 2015-Genova. Genova, Italy: IEEE, 2015: 1−6.
|
[30] |
WIRZ J, TRANZATTO M, LINIGER A, et al. AEOLUS, the ETH autonomous model sailboat[M]//FRIEBE A, HAUG F. Proceedings of the 8th International Robotic Sailing Conference on Robotic Sailing 2015. Cham: Springer, 2015: 103−112.
|
[31] |
MÉNAGE O, BETHENCOURT A, ROUSSEAUX P, et al. VAIMOS: Realization of an autonomous robotic sailboat[M]//BARS F, JAULIN L. Proceedings of the 6th International Robotic Sailing Conference on Robotic Sailing 2013. Cham: Springer, 2014: 25−36.
|
[32] |
ANTHIERENS C, PAULY E, JEAY F. MARIUS: A SailBot for sea-sailing[M]//BARS F, JAULIN L. Proceedings of the 6th International Robotic Sailing Conference on Robotic Sailing 2013. Cham: Springer, 2014: 3−12.
|
[33] |
ALVES J C, CRUZ N A. FASt-an autonomous sailing platform for oceanographic missions[C]//OCEANS 2008. Quebec City, QC, Canada: IEEE, 2008: 1−7.
|
[34] |
SCHLAEFER A, BECKMANN D, HEINIG M, et al. A new class for robotic sailing: the robotic racing micro magic[M]//SCHLAEFER A, BLAUROCK O. Proceedings of the 4th International Robotic Sailing Conference on Robotic Sailing. Berlin, Heidelberg: Springer, 2011: 71−84.
|
[35] |
NEUMANN T, SCHLAEFER A. Feasibility of basic visual navigation for small robotic sailboats[M]//SAUZÉ C, FINNIS J. Proceedings of the 5th International Robotic Sailing Conference on Robotic Sailing 2012. Berlin, Heidelberg: Springer, 2013: 13−22.
|
[36] |
HERTEL L, SCHLAEFER A. Data mining for optimal sail and rudder control of small robotic sailboats[M]//SAUZÉ C, FINNIS J. Proceedings of the 5th International Robotic Sailing Conference on Robotic Sailing 2012. Berlin, Heidelberg: Springer, 2013: 37−48.
|
[37] |
BRIERE Y. IBOAT: An autonomous robot for long-term offshore operation[C]//MELECON 2008-The 14th IEEE Mediterranean Electrotechnical Conference. Ajaccio, France: IEEE, 2008: 323−329.
|
[38] |
LEMAIRE S, CAO Y, KLUYVER T, et al. Adaptive probabilistic tack manoeuvre decision for sailing vessels[C]//SCHILLAI S M, TOWNSEND N. International Robotic Sailing Conference IRSC2018. Southampton, UK: [s. n. ], 2019.
|
[39] |
CABRERA-GÁMEZ J, DE MIGUEL A R, DOMÍNGUEZ-BRITO A C, et al. An embedded low-power control system for autonomous sailboats[M]//LE BARS F, JAULIN L. Proceedings of the 6th International Robotic Sailing Conference on Robotic Sailing 2013. Cham: Springer, 2014: 67−79.
|
[40] |
LELOUP R, LE PIVERT F, THOMAS S, et al. Breizh spirit, a reliable boat for crossing the Atlantic Ocean[M]//SCHLAEFER A, BLAUROCK O. Proceedings of the 4th International Robotic Sailing Conference on Robotic Sailing. Berlin, Heidelberg: Springer, 2011.
|
[41] |
KANG M Q, XU J S, XU J Y, et al. Autonomous sailboat local route planning[M]//ALVES J C, CRUZ N A. Proceedings of the 9th International Robotic Sailing Conference on Robotic Sailing 2016. Cham: Springer, 2016: 33−43.
|
[42] |
WANG Q, KANG M Q, XU J S, et al. Autonomous sailboat track following control[M]//FRIEBE A, HAUG F. Proceedings of the 8th International Robotic Sailing Conference on Robotic Sailing 2015. Cham: Springer, 2015: 125−136.
|
[43] |
CALÌ M, OLIVERI S M, GLORIA A, et al. Comparison of commonly used sail cloths through photogrammetric acquisitions, experimental tests and numerical aerodynamic simulations[J]. Procedia Manufacturing, 2017, 11: 1651–1658. doi: 10.1016/j.promfg.2017.07.287
|
[44] |
CALÌ M, OLIVERI S M, CELLA U, et al. Mechanical characterization and modeling of downwind sailcloth in fluid-structure interaction analysis[J]. Ocean Engineering, 2018, 165: 488–504. doi: 10.1016/j.oceaneng.2018.07.011
|
[45] |
CALÌ M, SPERANZA D, MARTORELLI M. Dynamic spinnaker performance through digital photogrammetry, numerical analysis and experimental tests[M]//EYNARD B, NIGRELLI V, OLIVERI S M, et al. Proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing (JCM 2016) Advances on Mechanics, Design Engineering and Manufacturing. Catania, Italy: Springer, 2017: 585−595.
|
[46] |
FOSSATI F V, MUGGIASCA S, MARTINA F. Experimental database of sails performance and flying shapes in upwind conditions[C]//International Conference on Innovation in High Performance Sailing Yachts (INNOVSAIL08). Lorient, France: The Royal Institution of Naval Architects, 2008: 99−114.
|
[47] |
DEPARDAY J, BOT P, HAUVILLE F, et al. Full-scale flying shape measurement of offwind yacht sails with photogrammetry[J]. Ocean Engineering, 2016, 127: 135–143. doi: 10.1016/j.oceaneng.2016.09.043
|
[48] |
RRANZENBACH R. Utility of flying shapes in the development of offwind sail design databases[C]//Proceedings of the High Performance Yacht Design Conference. Auckland, New Zealand: University of Maryland, 2002.
|
[49] |
COBELLI P J, MAUREL A, PAGNEUX V, et al. Global measurement of water waves by Fourier transform profilometry[J]. Experiments in Fluids, 2009, 46(6): 1037–1047. doi: 10.1007/s00348-009-0611-z
|
[50] |
FOSSATI F, MAINETTI G, MALANDRA M, et al. Offwind sail flying shapes detection[C]//Proceedings of the 5th High Performance Yacht Design Conference. Auckland, [s. n. ], 2015: 48−59.
|
[51] |
MAUSOLF J, DEPARDAY J, GRAF K, et al. Photogrammetry based flying shape investigation of downwind sails in the wind tunnel and at full scale on a sailing yacht[C]//Proceedings of the 20th Cheasapeake Sailing Yacht Symposium. Annapolis, Maryland, USA: SNAME, 2011: 33−43.
|
[52] |
AUBIN N, AUGIER B, BOT P, et al. Inviscid approach for upwind sails aerodynamics. How far can we go?[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 155: 208–215. doi: 10.1016/j.jweia.2016.06.005
|
[53] |
FOSSATI F, BAYATI I, MUGGIASCA S, et al. Pressure measurements on yacht sails: development of a new system for wind tunnel and full scale testing[J]. Journal of Sailing Technology, 2017, 2(1): 1–33.
|
[54] |
VAVANDONE A. Measurement and analysis of free-form objects development of a solution for flying sail shape reconstruction[D]. Milan: Politecnico di Milano, 2016.
|
[55] |
BAYATI I, MUGGIASCA S, VANDONE A. Experimental and numerical wind tunnel investigation of the aerodynamics of upwind soft sails[J]. Ocean Engineering, 2019, 182: 395–411. doi: 10.1016/j.oceaneng.2019.04.037
|
[56] |
LEE H, PARK M Y, PARK S, et al. Prediction of velocity and attitude of a yacht sailing upwind by computational fluid dynamics[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(1): 1–12. doi: 10.1016/j.ijnaoe.2016.01.003
|
[57] |
HE J H, HU Y H, TANG J J, et al. Research on sail aerodynamics performance and sail-assisted ship stability[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 146: 81–89. doi: 10.1016/j.jweia.2015.08.005
|
[58] |
AUBIN N, AUGIER B, DEPARDAY J, et al. Performance enhancement of downwind sails due to leading edge flapping: a wind tunnel investigation[J]. Ocean Engineering, 2018, 169: 370–378. doi: 10.1016/j.oceaneng.2018.08.037
|
[59] |
GHELARDI S, FREDA A, RIZZO C M, et al. A fluid-structure interaction case study on a square sail in a wind tunnel[J]. Ocean Engineering, 2018, 163: 136–147. doi: 10.1016/j.oceaneng.2018.05.056
|
[60] |
PERSSON A, LINDSTRAND R, MUGGIASCA S, et al. CFD prediction of steady and unsteady upwind sail aerodynamics[J]. Ocean Engineering, 2017, 141: 543–554. doi: 10.1016/j.oceaneng.2017.06.039
|
[61] |
AFTAB S M A, MOHD RAFIE A S, RAZAK N A, et al. Turbulence model selection for low Reynolds number flows[J]. PLoS One, 2016, 11(4): e0153755. doi: 10.1371/journal.pone.0153755
|
[62] |
AUGIER B, BOT P, HAUVILLE F, et al. Dynamic behaviour of a flexible yacht sail plan[J]. Ocean Engineering, 2013, 66: 32–43. doi: 10.1016/j.oceaneng.2013.03.017
|
[63] |
BAK S, YOO J, SONG C Y. Fluid-structure interaction analysis on the deformation of simplified yacht sails[J]. Journal of the Society of Naval Architects of Korea, 2013, 50(1): 33–40. doi: 10.3744/SNAK.2013.50.1.33
|