FANG Z J, TAN J Z, JI G Y, et al. Tehnical development status and prospect of flexible sails of unmanned sailboats[J]. Chinese Journal of Ship Research, 2022, 17(4): 183–193. DOI: 10.19693/j.issn.1673-3185.02371
Citation: FANG Z J, TAN J Z, JI G Y, et al. Tehnical development status and prospect of flexible sails of unmanned sailboats[J]. Chinese Journal of Ship Research, 2022, 17(4): 183–193. DOI: 10.19693/j.issn.1673-3185.02371

Tehnical development status and prospect of flexible sails of unmanned sailboats

More Information
  • Received Date: May 10, 2021
  • Revised Date: June 11, 2021
  • Available Online: September 21, 2021
© 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Sail systems and aerodynamic performance are important factors for determining the dynamic performance of unmanned sailboats. First, in order to identify the future trends of the flexible sails of unmanned sailboats, representative unmanned sailboats with flexible sails in the world are reported. The flexible sail system is then summarized in terms of physical characteristics, installation and fixing schemes, and sail trim schemes. The progress of three research methods of numerical simulation, wind tunnel test and sea trial for aerodynamic performance are analyzed respectively, and the basic technical route for research on the aerodynamic performance of flexible sails is summarized. Finally, several future key technologies of unmanned sailboats and flexible sails are predicted.
  • [1]
    BARS F L, JAULIN L. Robotic sailing 2013[C]//Proceedings of the 6th International Robotic Sailing Conference. Switzerland: Springer International Publishing, 2014.
    [2]
    ALVES J C, CRUZ N A. Robotic sailing 2016[C]//Proceedings of the 9th International Robotic Sailing Conference. Castelo, Portugal: Springer Publishing Company, 2016.
    [3]
    SCHILLAI S M, TOWNSEND N. Robotic sailing 2018[C]//11th International Robotic Sailing Conference 2018. Southampton, U. K. : Curran Associates, Inc. , 2018.
    [4]
    ENQVIST T J. Undersökning av vingsegel-anordning för robotsegelbåt[D]. Hanseatic City of Lubeck: Högskolan på Åland–Åland University of Applied Sciences, 2016.
    [5]
    INSIGHT M. Top 7 green ship concepts using wind energy[EB/OL]. 2017. (2018-10-26). https://www.marineinsight.com/green-shipping/top-7-green-ship-concepts-using-wind-energy/.
    [6]
    SILVA M F, FRIEBE A, MALHEIRO B, et al. Rigid wing sailboats: a state of the art survey[J]. Ocean Engineering, 2019, 187: 106150. doi: 10.1016/j.oceaneng.2019.106150
    [7]
    NEAL M, SAUZÉ C, THOMAS B, et al. Technologies for autonomous sailing: wings and wind sensors[C]//Proceedings of the 2nd IRSC. Matosinhos, Portugal, [s. n. ] 2009: 6−12.
    [8]
    俞建成, 孙朝阳, 张艾群. 无人帆船研究现状与展望[J]. 机械工程学报, 2018, 54(24): 98–110. doi: 10.3901/JME.2018.24.098

    YU J C, SUN Z Y, ZHANG A Q. Research status and prospect of autonomous sailboats[J]. Journal of Mechanical Engineering, 2018, 54(24): 98–110 (in Chinese). doi: 10.3901/JME.2018.24.098
    [9]
    The history of SailBot[EB/OL]. (2021-03-01)[2021-04-15]. https://www.sailbot.org/.
    [10]
    The history of the Microtransat[EB/OL]. (2020-11-20)[2021-04-15]. https://www.microtransat.org/history.php.
    [11]
    The home of WRSC/IRSC[EB/OL]. (2020-12-15)[2021-04-15]. https://www.roboticsailing.org/index.html.
    [12]
    SCHLAEFER A, BLAUROCK O. Robotic sailing[C]//Proceedings of the 4th International Robotic Sailing Conference. Berlin, Heidelberg: Springer Science & Business Media, 2011.
    [13]
    MORGAN F, TYNAN D. Robotic sailing 2014[C]//Proceedings of the 7th International Robotic Sailing Conference. Switzerland, AG: Springer, 2015.
    [14]
    STELZER R, JAFARMADAR K. History and recent developments in robotic sailing[M]//SCHLAEFER A, BLAUROCK O. Proceedings of the 4th International Robotic Sailing Conference on Robotic Sailing. Berlin, Heidelberg: Springer, 2011: 3–23.
    [15]
    The technologies of ASV ROBOAT[EB/OL]. (2017-06-18) [2021-04-15]. http://www.roboat.at/technologie/technologie/.
    [16]
    STELZER R, JAFARMADAR K. The robotic sailing boat ASV roboat as a maritime research platform[C]//Proceedings of 22nd International HISWA Symposium. Amsterdan, Netherland, 2012.
    [17]
    STELZER R, DALMAU D E. A study on potential energy savings by the use of a balanced rig on a robotic sailing boat[M]//SAUZÉ C, FINNIS J. Proceedings of the 5th International Robotic Sailing Conference on Robotic Sailing 2012. Berlin, Heidelberg: Springer, 2013: 87–93.
    [18]
    STELZER R. Autonomous sailboat navigation: novel algorithms and experimental demonstration [M]. Berlin, Germany: Lambert Academic Publishing, 2013.
    [19]
    MILLER P H, HAMLET M, ROSSMAN J. Continuous improvements to USNA SailBots for inshore racing and offshore voyaging[M]//SAUZÉ C, FINNIS J. Proceedings of the 5th International Robotic Sailing Conference on Robotic Sailing 2012. Berlin, Heidelberg: Springer, 2013: 49–60.
    [20]
    MILLER P, BEELER A, CAYABAN B, et al. An easy-to-build, low-cost, high-performance SailBot[M]//MORGAN F, TYNAN D. Proceedings of the 7th International Robotic Sailing Conference on Robotic Sailing 2014. Cham: Springer, 2015: 3–16.
    [21]
    MILLER P, HODAPP P, PINCH R, et al. Correlation of velocity prediction program for small autonomous sailboats[M]//ØVERGÅRD K I. Proceedings of the 10th International Robotic Sailing Conference on Robotic Sailing 2017. Cham: Springer, 2018: 19–30.
    [22]
    MARTIN D E, BECK R F. PCSAIL, a velocity prediction program for a home computer[C]//SNAME 15th Chesapeake Sailing Yacht Symposium. Annapolis, Maryland, USA: SNAME, 2001.
    [23]
    MILLER P, SAUZÉ C, NEAL M. Development of ARRTOO: a long-endurance, hybrid-powered, oceanographic research vessel[M]//BARS F, JAULIN L. Proceedings of the 6th International Robotic Sailing Conference on Robotic Sailing 2013. Cham: Springer, 2014: 53–65.
    [24]
    MaxiMOOP. (2017-05-16) [2021-04-15]. https://www.sailbot.org/maximoop/.
    [25]
    MILLER P, HAMLET M, SAUZÉ C, et al. MaxiMOOP: a multi-role, low cost and small sailing robot platform[M]//MORGAN F, TYNAN D. Proceedings of the 7th International Robotic Sailing Conference on Robotic Sailing 2014. Cham: Springer, 2015: 17−30.
    [26]
    SCHRÖDER C, HERTEL L. Development of a low-budget robotic sailboat[M]//BARS F, JAULIN L. Proceedings of the 6th International Robotic Sailing Conference on Robotic Sailing 2013. Cham: Springer, 2014: 13−24.
    [27]
    ERCKENS H, BEUSSER G A, PRADALIER C, et al. Avalon: navigation strategy and trajectory following controller for an autonomous sailing vessel[J]. IEEE Robotics & Automation Magazine, 2010, 17(1): 45–54.
    [28]
    GIGER L, WISMER S, BOEHL S, et al. Design and construction of the autonomous sailing vessel AVALON[C]//2nd World Robotic Sailing Championship and International Robotic Sailing Conference (WRSC & IRSC 2009). Matosinhos, Portugal: Eidgenössische Technische Hochschule Zürich, 2013.
    [29]
    TRANZATTO M, LINIGER A, GRAMMATICO S, et al. The debut of Aeolus, the autonomous model sailboat of ETH Zurich[C]//OCEANS 2015-Genova. Genova, Italy: IEEE, 2015: 1−6.
    [30]
    WIRZ J, TRANZATTO M, LINIGER A, et al. AEOLUS, the ETH autonomous model sailboat[M]//FRIEBE A, HAUG F. Proceedings of the 8th International Robotic Sailing Conference on Robotic Sailing 2015. Cham: Springer, 2015: 103−112.
    [31]
    MÉNAGE O, BETHENCOURT A, ROUSSEAUX P, et al. VAIMOS: Realization of an autonomous robotic sailboat[M]//BARS F, JAULIN L. Proceedings of the 6th International Robotic Sailing Conference on Robotic Sailing 2013. Cham: Springer, 2014: 25−36.
    [32]
    ANTHIERENS C, PAULY E, JEAY F. MARIUS: A SailBot for sea-sailing[M]//BARS F, JAULIN L. Proceedings of the 6th International Robotic Sailing Conference on Robotic Sailing 2013. Cham: Springer, 2014: 3−12.
    [33]
    ALVES J C, CRUZ N A. FASt-an autonomous sailing platform for oceanographic missions[C]//OCEANS 2008. Quebec City, QC, Canada: IEEE, 2008: 1−7.
    [34]
    SCHLAEFER A, BECKMANN D, HEINIG M, et al. A new class for robotic sailing: the robotic racing micro magic[M]//SCHLAEFER A, BLAUROCK O. Proceedings of the 4th International Robotic Sailing Conference on Robotic Sailing. Berlin, Heidelberg: Springer, 2011: 71−84.
    [35]
    NEUMANN T, SCHLAEFER A. Feasibility of basic visual navigation for small robotic sailboats[M]//SAUZÉ C, FINNIS J. Proceedings of the 5th International Robotic Sailing Conference on Robotic Sailing 2012. Berlin, Heidelberg: Springer, 2013: 13−22.
    [36]
    HERTEL L, SCHLAEFER A. Data mining for optimal sail and rudder control of small robotic sailboats[M]//SAUZÉ C, FINNIS J. Proceedings of the 5th International Robotic Sailing Conference on Robotic Sailing 2012. Berlin, Heidelberg: Springer, 2013: 37−48.
    [37]
    BRIERE Y. IBOAT: An autonomous robot for long-term offshore operation[C]//MELECON 2008-The 14th IEEE Mediterranean Electrotechnical Conference. Ajaccio, France: IEEE, 2008: 323−329.
    [38]
    LEMAIRE S, CAO Y, KLUYVER T, et al. Adaptive probabilistic tack manoeuvre decision for sailing vessels[C]//SCHILLAI S M, TOWNSEND N. International Robotic Sailing Conference IRSC2018. Southampton, UK: [s. n. ], 2019.
    [39]
    CABRERA-GÁMEZ J, DE MIGUEL A R, DOMÍNGUEZ-BRITO A C, et al. An embedded low-power control system for autonomous sailboats[M]//LE BARS F, JAULIN L. Proceedings of the 6th International Robotic Sailing Conference on Robotic Sailing 2013. Cham: Springer, 2014: 67−79.
    [40]
    LELOUP R, LE PIVERT F, THOMAS S, et al. Breizh spirit, a reliable boat for crossing the Atlantic Ocean[M]//SCHLAEFER A, BLAUROCK O. Proceedings of the 4th International Robotic Sailing Conference on Robotic Sailing. Berlin, Heidelberg: Springer, 2011.
    [41]
    KANG M Q, XU J S, XU J Y, et al. Autonomous sailboat local route planning[M]//ALVES J C, CRUZ N A. Proceedings of the 9th International Robotic Sailing Conference on Robotic Sailing 2016. Cham: Springer, 2016: 33−43.
    [42]
    WANG Q, KANG M Q, XU J S, et al. Autonomous sailboat track following control[M]//FRIEBE A, HAUG F. Proceedings of the 8th International Robotic Sailing Conference on Robotic Sailing 2015. Cham: Springer, 2015: 125−136.
    [43]
    CALÌ M, OLIVERI S M, GLORIA A, et al. Comparison of commonly used sail cloths through photogrammetric acquisitions, experimental tests and numerical aerodynamic simulations[J]. Procedia Manufacturing, 2017, 11: 1651–1658. doi: 10.1016/j.promfg.2017.07.287
    [44]
    CALÌ M, OLIVERI S M, CELLA U, et al. Mechanical characterization and modeling of downwind sailcloth in fluid-structure interaction analysis[J]. Ocean Engineering, 2018, 165: 488–504. doi: 10.1016/j.oceaneng.2018.07.011
    [45]
    CALÌ M, SPERANZA D, MARTORELLI M. Dynamic spinnaker performance through digital photogrammetry, numerical analysis and experimental tests[M]//EYNARD B, NIGRELLI V, OLIVERI S M, et al. Proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing (JCM 2016) Advances on Mechanics, Design Engineering and Manufacturing. Catania, Italy: Springer, 2017: 585−595.
    [46]
    FOSSATI F V, MUGGIASCA S, MARTINA F. Experimental database of sails performance and flying shapes in upwind conditions[C]//International Conference on Innovation in High Performance Sailing Yachts (INNOVSAIL08). Lorient, France: The Royal Institution of Naval Architects, 2008: 99−114.
    [47]
    DEPARDAY J, BOT P, HAUVILLE F, et al. Full-scale flying shape measurement of offwind yacht sails with photogrammetry[J]. Ocean Engineering, 2016, 127: 135–143. doi: 10.1016/j.oceaneng.2016.09.043
    [48]
    RRANZENBACH R. Utility of flying shapes in the development of offwind sail design databases[C]//Proceedings of the High Performance Yacht Design Conference. Auckland, New Zealand: University of Maryland, 2002.
    [49]
    COBELLI P J, MAUREL A, PAGNEUX V, et al. Global measurement of water waves by Fourier transform profilometry[J]. Experiments in Fluids, 2009, 46(6): 1037–1047. doi: 10.1007/s00348-009-0611-z
    [50]
    FOSSATI F, MAINETTI G, MALANDRA M, et al. Offwind sail flying shapes detection[C]//Proceedings of the 5th High Performance Yacht Design Conference. Auckland, [s. n. ], 2015: 48−59.
    [51]
    MAUSOLF J, DEPARDAY J, GRAF K, et al. Photogrammetry based flying shape investigation of downwind sails in the wind tunnel and at full scale on a sailing yacht[C]//Proceedings of the 20th Cheasapeake Sailing Yacht Symposium. Annapolis, Maryland, USA: SNAME, 2011: 33−43.
    [52]
    AUBIN N, AUGIER B, BOT P, et al. Inviscid approach for upwind sails aerodynamics. How far can we go?[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 155: 208–215. doi: 10.1016/j.jweia.2016.06.005
    [53]
    FOSSATI F, BAYATI I, MUGGIASCA S, et al. Pressure measurements on yacht sails: development of a new system for wind tunnel and full scale testing[J]. Journal of Sailing Technology, 2017, 2(1): 1–33.
    [54]
    VAVANDONE A. Measurement and analysis of free-form objects development of a solution for flying sail shape reconstruction[D]. Milan: Politecnico di Milano, 2016.
    [55]
    BAYATI I, MUGGIASCA S, VANDONE A. Experimental and numerical wind tunnel investigation of the aerodynamics of upwind soft sails[J]. Ocean Engineering, 2019, 182: 395–411. doi: 10.1016/j.oceaneng.2019.04.037
    [56]
    LEE H, PARK M Y, PARK S, et al. Prediction of velocity and attitude of a yacht sailing upwind by computational fluid dynamics[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(1): 1–12. doi: 10.1016/j.ijnaoe.2016.01.003
    [57]
    HE J H, HU Y H, TANG J J, et al. Research on sail aerodynamics performance and sail-assisted ship stability[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 146: 81–89. doi: 10.1016/j.jweia.2015.08.005
    [58]
    AUBIN N, AUGIER B, DEPARDAY J, et al. Performance enhancement of downwind sails due to leading edge flapping: a wind tunnel investigation[J]. Ocean Engineering, 2018, 169: 370–378. doi: 10.1016/j.oceaneng.2018.08.037
    [59]
    GHELARDI S, FREDA A, RIZZO C M, et al. A fluid-structure interaction case study on a square sail in a wind tunnel[J]. Ocean Engineering, 2018, 163: 136–147. doi: 10.1016/j.oceaneng.2018.05.056
    [60]
    PERSSON A, LINDSTRAND R, MUGGIASCA S, et al. CFD prediction of steady and unsteady upwind sail aerodynamics[J]. Ocean Engineering, 2017, 141: 543–554. doi: 10.1016/j.oceaneng.2017.06.039
    [61]
    AFTAB S M A, MOHD RAFIE A S, RAZAK N A, et al. Turbulence model selection for low Reynolds number flows[J]. PLoS One, 2016, 11(4): e0153755. doi: 10.1371/journal.pone.0153755
    [62]
    AUGIER B, BOT P, HAUVILLE F, et al. Dynamic behaviour of a flexible yacht sail plan[J]. Ocean Engineering, 2013, 66: 32–43. doi: 10.1016/j.oceaneng.2013.03.017
    [63]
    BAK S, YOO J, SONG C Y. Fluid-structure interaction analysis on the deformation of simplified yacht sails[J]. Journal of the Society of Naval Architects of Korea, 2013, 50(1): 33–40. doi: 10.3744/SNAK.2013.50.1.33

Catalog

    Article views (1114) PDF downloads (132) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return