Citation: | LIU J J, WU H Y, YU L. Hull form optimization of polar expedition cruise ship considering transoceanic characteristics and brash ice effect on resistance and propulsion[J]. Chinese Journal of Ship Research, 2024, 19(2): 62–70 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03216 |
In the context of global carbon reduction, in order to meet the environmental require-ments of the design and construction of polar ships, this paper studies the impact of brash ice on the optimal design of polar expedition cruise ships when navigating across oceans and designs the most optimal energy-saving hull lines.
In view of the transoceanic characteristics of polar expedition cruise ships, the navigation region-based weighting method is used to quantify the evaluation and analyze the impact of brash ice on resistance and propulsion efficiency. An analysis is carried out of the performance of the propeller in broken ice channel through the coupling calculation of the computational fluid dynamics-discrete element method (CFD-DEM), an optimization model with the goal of combined self-propulsion power is established, and optimization calculations are performed for the parametric model of the whole ship at the designed speed.
The calculation results show that the optimized ship hull meets the requirements of displacement and effectively reduces navigation power in open water and broken ice channel with a combined self-propulsion power reduction of 9.71%.
The results of this study verify the feasibility and rationality of optimization based on the weighting method, and can provide references for the optimization design of hull form and thrusters of polar expedition cruise ships.
[1] |
刘臣, 郭歆. 极地探险邮轮市场分析与船型发展趋势[J]. 船舶工程, 2021, 43(7): 11–20.
LIU C, GUO X. Polar expedition cruise market analysis and ship shape development trend[J]. Ship Engineering, 2021, 43(7): 11–20 (in Chinese).
|
[2] |
刘瀛昊, 佟福山, 高良田. 极地破冰船的快速性优化设计[J]. 计算机仿真, 2016, 33(11): 405–409. doi: 10.3969/j.issn.1006-9348.2016.11.088
LIU Y H, TONG F S, GAO L T. The optimization design of rapidity of polar icebreaker[J]. Computer Simul-ation, 2016, 33(11): 405–409 (in Chinese). doi: 10.3969/j.issn.1006-9348.2016.11.088
|
[3] |
王志鹏, 郝寨柳, 吴乘胜, 等. 兼顾开敞水域航行减阻的极地油船首部优化[J]. 武汉理工大学学报(交通科学与工程版), 2018, 42(2): 257–262.
WANG Z P, HAO Z L, WU C S, et al. Bow optimization of a polar oil tanker considering drag reduction of sailing in open water[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2018, 42(2): 257–262 (in Chinese).
|
[4] |
段菲, 张利军, 陈鸽, 等. 基于多目标优化算法NSGA II的极地穿梭油轮型线设计[J]. 中国舰船研究, 2017, 12(6): 66–72. doi: 10.3969/j.issn.1673-3185.2017.06.010
DUAN F, ZHANG L J, CHEN G, et al. Polar vessel hullform design based on the multi-objective optimization NSGA II[J]. Chinese Journal of Ship Research, 2017, 12(6): 66–72 (in both Chinese and English). doi: 10.3969/j.issn.1673-3185.2017.06.010
|
[5] |
何为, 薛卫东, 唐斌. 优化试验设计方法及数据分析[M]. 北京: 化学工业出版社, 2012: 62-64.
HE W, XUE W D, TANG B. Optimization of test design method and data analysis[M]. Beijing: Chemical Industry Press, 2012: 62-64 (in Chinese).
|
[6] |
HOLLAND P R. The seasonality of Antarctic sea ice trends[J]. Geophysical Research Letters, 2014, 41(12): 4230–4237. doi: 10.1002/2014GL060172
|
[7] |
LARSSON L. SHIPFLOW user's manual and theoretical manual[S]. Gothenburg: Flowtech Int. AB, 1997.
|
[8] |
韩端锋, 乔岳, 薛彦卓, 等. 冰区航行船舶冰阻力研究方法综述[J]. 船舶力学, 2017, 21(8): 1041–1054. doi: 10.3969/j.issn.1007-7294.2017.08.014
HAN D F, QIAO Y, XUE Y Z, et al. A review of ice resistance research methods for ice-going ships[J]. Journal of Ship Mechanics, 2017, 21(8): 1041–1054 (in Chinese). doi: 10.3969/j.issn.1007-7294.2017.08.014
|
[9] |
刚旭皓, 田于逵, 季少鹏, 等. 冰区航行船舶冰阻力数值研究进展[J]. 船舶工程, 2020, 42(9): 6–13, 43. doi: 10.13788/j.cnki.cbgc.2020.09.02
GANG X H, TIAN Y K, JI S P, et al. Study development of numerical simulation for ice resistance of ice-going ship[J]. Ship Engineering, 2020, 42(9): 6–13, 43 (in Chinese). doi: 10.13788/j.cnki.cbgc.2020.09.02
|
[10] |
LINDQVIST G. A straightforward method for calculation of ice resistance of ships[C]//Proceedings of the 10th International Conference on Port and Ocean Engineering under Arctic Conditions. Lulea, Sweden: [s. n. ], 1989: 722–735.
|
[11] |
KEINONEN A, BROWNE R P. Icebreaker performance prediction[C]//Proceedings of the First International Offshore and Polar Engineering Conference. Edinburgh, Scotland: [s. n. ], 1991: 562–570.
|
[12] |
RISKA K. On the mechanics of the ramming interaction between a ship and a massive ice floe: dissertation[D]. Espoo: VTT Technical Research Centre of Finland, 1987.
|
[13] |
Finnish Maritime Administration. Finnish-Swedish ice class rules: bulletin No. 13/1.10. 2002[R]. Helsinki: Finnish Maritime Administration, 2002.
|
[14] |
王国亮. 冰–桨–流相互作用下的螺旋桨水动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
WANG G L. Study of propeller hydrodynamic performance under ice-propeller-flow interaction[D]. Harbin: Harbin Engineering University, 2016 (in Chinese).
|
[15] |
徐佩, 郭春雨, 王超, 等. 基于CFD-DEM耦合的螺旋桨–碎冰–水相互作用的数值模拟[J]. 中国造船, 2019, 60(1): 120–140. doi: 10.3969/j.issn.1000-4882.2019.01.013
XU P, GUO C Y, WANG C, et al. Simulation of propeller-trash ice-water interaction using coupling CFD and DEM methods[J]. Shipbuilding of China, 2019, 60(1): 120–140 (in Chinese). doi: 10.3969/j.issn.1000-4882.2019.01.013
|
[16] |
NOROUZI H R, ZARGHAMI R, SOTUDEH-GHAREBAGH R, et al. Coupled CFD-DEM modeling: formulation, implementation and applications to multiphase flows[M]. Chichester: John Wiley & Sons, 2016.
|
[17] |
DI RENZO A, DI MAIO F P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science, 2004, 59(3): 525–541. doi: 10.1016/j.ces.2003.09.037
|
[18] |
HAIDER A, LEVENSPIEL O. Drag coefficient and terminal velocity of spherical and nonspherical particles[J]. Powder Technology, 1989, 58(1): 63–70. doi: 10.1016/0032-5910(89)80008-7
|
[19] |
LUO W L, LAN L Q. Design optimization of the lines of the bulbous bow of a hull based on parametric modeling and computational fluid dynamics calculation[J]. Mathematical and Computational Application, 2017, 22(1): 4. doi: 10.3390/mca22010004
|
[20] |
BRATLEY P, FOX B L. Algorithm 659: implementing Sobol's quasirandom sequence generator[J]. ACM Transactions on Mathematical Software, 1988, 14(1): 88–100. doi: 10.1145/42288.214372
|
[21] |
LAYEB A. Tangent search algorithm for solving optimization problems[J]. Neural Computing and Applications, 2022, 34(11): 8853–8884. doi: 10.1007/s00521-022-06908-z
|
[1] | YANG Xiaonan, SHI Haitian, CHAI Wei, LÜ Cheng, FENG Peiyuan, WU Da. Study on ice load characteristics of polar ships under oblique sailing based on discrete element method[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04269 |
[2] | ZHAO Yunrui, GAO Haibo, LIN Zhiguo, GUO Yunhua, ZHANG Jianfeng. Selection and evaluation of polar cruise fin stabilizer based on combination weighting-TOPSIS method[J]. Chinese Journal of Ship Research, 2021, 16(5): 121-126, 149. DOI: 10.19693/j.issn.1673-3185.02037 |
[3] | KONG Shuai, JI Shunying, JI Shaopeng, WANG Yinghui, GANG Xuhao. Numerical analysis of ice load on floating platform in polar region based on high-performance discrete element method[J]. Chinese Journal of Ship Research, 2021, 16(5): 64-70. DOI: 10.19693/j.issn.1673-3185.02192 |
[4] | MENG Qiao, QU Yuan, CHEN Ling. Application of wave added resistance calculation method in comprehensive optimization design of ship hull form[J]. Chinese Journal of Ship Research, 2020, 15(2): 17-22. DOI: 10.19693/j.issn.1673-3185.01823 |
[5] | DENG Xianhui, FANG Zhaozhao, ZHAO Bingqian. 基于计算流体动力学的最小阻力船型自动优化[J]. Chinese Journal of Ship Research, 2015, 10(3): 19-25. DOI: 10.3969/j.issn.1673-3185.2015.03.004 |
[6] | ZHANG Tao, BI Yi. Synthesized Evaluation of Ship Maneuverability Based on the Entropy-Weight Method and Vague Value Method[J]. Chinese Journal of Ship Research, 2013, 8(3): 45-49. DOI: 10.3969/j.issn.1673-3185.2013.03.009 |
[7] | Duan Yexin, Lu Xiaoping, Wang Yi, He Lei. 五体船兴波阻力线性理论计算与CFD数值模拟[J]. Chinese Journal of Ship Research, 2011, 6(6): 1-7,22. DOI: 10.3969/j.issn.1673-3185.2011.06.001 |
[8] | Zheng Jie, Xie Wei, Li Huimin. 三维流体动力方法计算穿浪双体船的船体响应[J]. Chinese Journal of Ship Research, 2011, 6(2): 29-34. DOI: 10.3969/j.issn.1673-3185.2011.02.006 |
[9] | Shen Xiaohong, Wu Qirui, Li Huimin. 带艉升力板艇的流体动力计算方法[J]. Chinese Journal of Ship Research, 2009, 4(1): 18-21. DOI: 10.3969/j.issn.1673-3185.2009.01.004 |
[10] | Jing Jun, Zheng Lifie, Wang Kai, Hu Gangyi, Yin Xiezhen. 计算流体力学中变形运动边界处理方法及应用[J]. Chinese Journal of Ship Research, 2007, 2(2): 57-62. DOI: 10.3969/j.issn.1673-3185.2007.02.014 |
1. |
王世超,刘刚. 考虑碎冰阻力和静水阻力的高效船型多目标优化方法. 中国舰船研究. 2024(06): 97-107 .
![]() |