Citation: | ZHANG E, MIN S S, HUA L, et al. Research on theoretical calculation method of hyperbolic rotating thin shell bending problem[J]. Chinese Journal of Ship Research, 2025, 20(2): 1–6 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03594 |
In order to analyze the bending characteristics of a hyperbolic rotating thin shell, the complex two-dimensional mechanical problem is simplified into a one-dimensional bending problem based on Euler's Bernoulli beam theor.
By analyzing the force and deformation characteristics of shells and belt beams, a structural mechanical model is established, and a double curvature rotating thin shell bending differential equation is obtained by combining the physical equation of plate and shell theory with the bending differential equation of a single-span beam. An empirical formula for typical stress is proposed and its accuracy verified by an ANSYS-based simulation.
The results show that the error between the simulation and the formula is about 2.3%, which demonstrates the high accuracy of the formula in predicting typical stress and verifies the correctness of the theoretical calculation method.
The proposed method can provide useful references for the design and optimization of similar structure.
[1] |
钱东, 赵江, 杨芸. 军用UUV发展方向与趋势(上)——美军用无人系统发展规划分析解读[J]. 水下无人系统学报, 2017, 25(1): 1–30.
QIAN D, ZHAO J, YANG Y. Development trend of military UUV (Ⅰ): a review of U. S. military unmanned system development plan[J]. Journal of Unmanned Undersea Systems, 2017, 25(1): 1–30 (in Chinese).
|
[2] |
钱东, 赵江, 杨芸. 军用UUV发展方向与趋势(下)——美军用无人系统发展规划分析解读[J]. 水下无人系统学报, 2017, 25(2): 107–150.
QIAN D, ZHAO J, YANG Y. Development trend of military UUV (Ⅱ): a review of U. S. military unmanned system development plan[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 107–150 (in Chinese).
|
[3] |
刘晓伟, 马宇, 李筠, 等. 2020年国外潜艇装备发展综述[J]. 飞航导弹, 2021(1): 47–54.
LIU X W, MA Y, LI Y, et al. Overview of the development of foreign submarine equipment in 2020[J]. Aerodynamic Missile Journal, 2021(1): 47–54 (in Chinese).
|
[4] |
杨力. 2018年俄罗斯潜艇力量[J]. 国外核新闻, 2018(10): 30–31.
YANG L. Russian submarine force in 2018[J]. Foreign Nuclear News, 2018(10): 30–31 (in Chinese).
|
[5] |
朱丹. 美国潜艇作战系统发展及启示[J]. 飞航导弹, 2019(7): 74–79.
ZHU D. Development and enlightenment of American submarine combat system[J]. Aerodynamic Missile Journal, 2019(7): 74–79 (in Chinese).
|
[6] |
REYNOLDS T, LOMACKY O, KRENZKE M. Design and analysis of small submersible pressure hulls[J]. Computers & Structures, 1973, 3(5): 1125–1143.
|
[7] |
ZHANG E, ZHU X L, JING T, et al. Research status and development trend of pressure resistant structure of deep submersibles[J]. Journal of Ship Mechanics, 2021, 25(10): 1427–1437.
|
[8] |
俞铭华, 王自力, 李良碧, 等. 大深度载人潜水器耐压壳结构研究进展[J]. 华东船舶工业学院学报(自然科学版), 2004, 18(4): 1–6.
YU M H, WANG Z L, LI L B, et al. Development of research on the pressure shell structure of deep manned submersible[J]. Journal of East China Shipbuilding Institute (Natural Science Edition), 2004, 18(4): 1–6 (in Chinese).
|
[9] |
李文跃, 王帅, 刘涛, 等. 大深度载人潜水器耐压壳结构研究现状及最新进展[J]. 中国造船, 2016, 57(1): 210–221.
LI W Y, WANG S, LIU T, et al. Current status and progress on pressure hull structure of manned deep submersible[J]. Shipbuilding of China, 2016, 57(1): 210–221 (in Chinese).
|
[10] |
张建, 王纬波, 高杰, 等. 深水耐压壳仿生设计与分析[J]. 船舶力学, 2015, 19(11): 1360–1367.
ZHANG J, WANG W B, GAO J, et al. Bionic design and analysis of deepwater pressure hull[J]. Journal of Ship Mechanics, 2015, 19(11): 1360–1367 (in Chinese).
|
[11] |
张建, 王明禄, 王纬波, 等. 蛋形耐压壳力学特性研究[J]. 船舶力学, 2016, 20(1/2): 99–109.
ZHANG J, WANG M L, WANG W B, et al. Research on mechanical properties of the eggshell-shaped pressure hull[J]. Journal of Ship Mechanics, 2016, 20(1/2): 99–109 (in Chinese).
|
[12] |
ELSAYED F, QI H, TONG L L, et al. Design optimization of lay-up and composite material system to achieve minimum buoyancy factor for composite elliptical submersible pressure hull[J]. Composite Structures, 2015, 121: 16–26. doi: 10.1016/j.compstruct.2014.11.002
|
[13] |
ELSAYED F, TONG L L, QI H, et al. Finite element analysis of deep elliptical submersible pressure hull subjected to a side-on non-contact underwater explosion[J]. Applied Mechanics and Materials, 2014, 578-579: 256–262. doi: 10.4028/www.scientific.net/AMM.578-579.256
|
[14] |
ELSAYED F, QI H, TONG L L, et al. Optimal design analysis of composite submersible pressure hull[J]. Applied Mechanics and Materials, 2014, 578-579: 89–96. doi: 10.4028/www.scientific.net/AMM.578-579.89
|
[15] |
ELSAYED F, QI H, TONG L L, et al. Numerical investigation of the dynamic response of optimized composite elliptical submersible pressure hull subjected to non-contact underwater explosion[J]. Composite Structures, 2015, 121: 121–133. doi: 10.1016/j.compstruct.2014.11.016
|
[16] |
荆腾, 吴梵, 张二, 等. 环壳过渡对潜艇锥-锥连接结构强度和稳定性的影响[J]. 中国舰船研究, 2020, 15(3): 111–116, 122. doi: 10.19693/j.issn.1673-3185.01600
JING T, WU F, ZHANG E, et al. Effects of toroidal transition on strength and stability of submarine's cone-cone connection structure[J]. Chinese Journal of Ship Research, 2020, 15(3): 111–116, 122 (in Chinese). doi: 10.19693/j.issn.1673-3185.01600
|
[17] |
荆腾, 吴梵, 张二, 等. 环壳过渡对潜艇锥-锥结构极限承载能力的影响[J]. 中国舰船研究, 2020, 15(4): 46–52. doi: 10.19693/j.issn.1673-3185.01645
JING T, WU F, ZHANG E, et al. Effects of toroidal transition on ultimate bearing capacity of submarine cone-cone connection structures[J]. Chinese Journal of Ship Research, 2020, 15(4): 46–52 (in Chinese). doi: 10.19693/j.issn.1673-3185.01645
|
[18] |
ZHANG E, CHEN G T, ZHU X L, et al. Advances in application and static strength of double curvature rotating pressure shell[J]. Journal of Ship Mechanics, 2022, 26(12): 1888–1903.
|
[1] | LI Nan, WU Xingxing, WANG Haikun, ZHANG Lunping, LI Junhua. Experimental and theoretical research on influence of warhead's nose shape on penetrating steel plates[J]. Chinese Journal of Ship Research, 2024, 19(3): 127-133. DOI: 10.19693/j.issn.1673-3185.03379 |
[2] | WANG Jiangchao, CHEN Xiangfei, NIU Yexing, DU Shizhong, SHEN Chaonan. Investigation on welding residual stress and vibration characteristics of ring-stiffened cylindrical shell[J]. Chinese Journal of Ship Research, 2023, 18(6): 208-215. DOI: 10.19693/j.issn.1673-3185.03081 |
[3] | WANG Xiaoming, WEI Qiang, PAN Man. Calculation bending deflection and stress for corrugated core sandwich panels employing equivalent stiffness method[J]. Chinese Journal of Ship Research, 2021, 16(2): 90-98, 107. DOI: 10.19693/j.issn.1673-3185.01873 |
[4] | YAN Xiaoshun, ZHOU Xintao, HUANG Xiaoping. Stress intensity factor calculation for surface cracks at weld toe of sphere-cylinder shells[J]. Chinese Journal of Ship Research, 2016, 11(4): 59-66. DOI: 10.3969/j.issn.1673-3185.2016.04.009 |
[5] | MO Lixin, XU Feng, ZHENG Shaowen. 基于等效截面的复合材料板格弯曲正应力计算方法[J]. Chinese Journal of Ship Research, 2014, 9(6): 34-38. DOI: 10.3969/j.issn.1673-3185.2014.06.006 |
[6] | CHEN Lin, DENG Aimin, LI Shuicai. 海事40 m级巡逻船理论螺旋桨设计应用分析[J]. Chinese Journal of Ship Research, 2013, 8(6): 91-96. DOI: 10.3969/j.issn.1673-3185.2013.06.016 |
[7] | Ma Lijun, Feng Qi, ZhangNan. 国外船舶破损稳性理论分析[J]. Chinese Journal of Ship Research, 2012, 7(2): 9-13. DOI: 10.3969/j.issn.1673-3185.2012.02.002 |
[8] | Wang Wei, Wu Fan. Computational Analysis on the Critical Stress of Stiffened Plates′ Overall Buckling[J]. Chinese Journal of Ship Research, 2011, 6(3): 21-27. DOI: 10.3969/j.issn.1673-3185.2011.03.005 |
[9] | Wang Xiaoming, Chen Jiegui. 环肋圆柱壳应力计算的新方法探索[J]. Chinese Journal of Ship Research, 2010, 5(5): 49-53. DOI: 10.3969/j.issn.1673-3185.2010.05.010 |
[10] | Wu Fangliang, Wu Xiaoguang, Ma Yunyi, He Hanbao, Xu Jian. 基于雷诺应力方程模型的全附体潜艇尾部伴流场三维粘性数值计算[J]. Chinese Journal of Ship Research, 2007, 2(6): 4-48. DOI: 10.3969/j.issn.1673-3185.2007.06.002 |