LI R, ZHAO Y R, HUO S L, et al. Intelligent recognition algorithm for hull segment closure surface components based on improved PointNet++[J]. Chinese Journal of Ship Research, 2024, 19(6): 173–179 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03744
Citation: LI R, ZHAO Y R, HUO S L, et al. Intelligent recognition algorithm for hull segment closure surface components based on improved PointNet++[J]. Chinese Journal of Ship Research, 2024, 19(6): 173–179 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03744

Intelligent recognition algorithm for hull segment closure surface components based on improved PointNet++

More Information
  • Received Date: January 14, 2024
  • Revised Date: February 28, 2024
  • Available Online: March 04, 2024
  • Published Date: April 14, 2024
© 2024 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Objectives 

    The point cloud data of hull segment closure obtained by a 3D scanner has such advantages as high precision and large data volume, and can accurately reflect the construction status of segment closure. Since the existing PointNet++ network is unable to process large-capacity point cloud data, an algorithm based on improved PointNet++ is proposed to realize the intelligent recognition of components for large-capacity hull segment convergence surface point cloud data.

    Methods 

    Based on the hypervoxel growth theory, the hull segment closure point cloud data is segmented and simplified, and a hull segment closure point cloud data set is constructed and used to train a PointNet++ network improved by deep learning theory.

    Results 

    The convergence results of the network model on the training and testing sets of hull segment closure surface point cloud data tend to be stable, achieving an accuracy rate of 90.012% on the testing set.

    Conclusions 

    The proposed method has good recognition ability and can achieve the intelligent recognition of hull segment closure surface components.

  • [1]
    陈尚伟, 汪骥, 刘玉君, 等. 基于PointNet++的船体分段合拢面智能识别方法[J]. 船舶工程, 2019, 41(12): 138–141.

    CHEN S W, WANG J, LIU Y J, et al. Intelligent recognition of block erection surface based on PointNet++[J]. Ship Engineering, 2019, 41(12): 138–141 (in Chinese).
    [2]
    李成坤. 船舶总段合拢面三维点云中对接特征的辨识方法研究[D]. 上海: 上海交通大学, 2021.

    LI C K. Identification of hull surface docking features in laser-scanned point cloud[D]. Shanghai: Shanghai Jiao Tong University, 2021 (in Chinese).
    [3]
    陈攀, 尚保佑, 李天匀, 等. 面向船舶轴系智能安装的法兰激光扫描点云分割研究[J]. 中国舰船研究, 2023, 18(6): 268–274. doi: 10.19693/j.issn.1673-3185.03114

    CHEN P, SHANG B Y, LI T Y, et al. Point cloud segmentation of flange laser scanning for ship shafting intelligent installation[J]. Chinese Journal of Ship Research, 2023, 18(6): 268–274 (in Chinese). doi: 10.19693/j.issn.1673-3185.03114
    [4]
    GAO Y F, PING C C, WANG L, et al. A simplification method for point cloud of T-profile steel plate for shipbuilding[J]. Algorithms, 2021, 14(7): 202. doi: 10.3390/a14070202
    [5]
    ZONG C J, WAN Z B. Container ship cell guide accuracy check technology based on improved 3D point cloud instance segmentation[J]. Brodogradnja, 2022, 73(1): 23–35. doi: 10.21278/brod73102
    [6]
    姜媛媛. 基于超体素区域增长的点云分割算法研究[D]. 西安: 西安电子科技大学, 2017.

    JIANG Y Y. Research on supervoxel based region growing segmentation for point cloud data[D]. Xi’an: Xidian University, 2017 (in Chinese).
    [7]
    方程喜, 隋立春, 朱海雄. 用于公路勘测设计的LiDAR点云抽稀算法[J]. 测绘通报, 2017(10): 58–61,88.

    FANG C X, SUI L C, ZHU H X. LiDAR point cloud thinning algorithm for road survey and design[J]. Bulletin of Surveying and Mapping, 2017(10): 58–61,88 (in Chinese).
    [8]
    陈薪宇. 基于PointNet++的道路场景点云分类方法研究[D]. 成都: 成都理工大学, 2021.

    CHEN X Y. Research on point cloud classification of road scene based on PointNet++[D]. Chengdu: Chengdu University of Technology, 2021 (in Chinese).
    [9]
    QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017: 5105-5114.
    [10]
    李晓溪. 基于深度学习的三维点云语义分割技术研究[D]. 成都: 电子科技大学, 2021.

    LI X X. Research on 3D point cloud semantic segmentation technology based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2021 (in Chinese).
    [11]
    TOMBARI F, SALTI S, DI STEFANO L. Unique signatures of histograms for local surface description[C]//The 11st European Conference on Computer Vision (ECCV 2010). Heraklion, Crete, Greece: Springer, 2010: 356−369.
  • Related Articles

    [1]SUN Guangxi, CAO Hui, ZHANG Ziwei, MA Zhenhao. Centrifugal pump degradation identification based on GA-GMDH algorithm[J]. Chinese Journal of Ship Research, 2024, 19(5): 254-262. DOI: 10.19693/j.issn.1673-3185.03513
    [2]YAN Xinping, WANG Shuwu, MA Feng. Review and prospect for intelligent cargo ships[J]. Chinese Journal of Ship Research, 2021, 16(1): 1-6. DOI: 10.19693/j.issn.1673-3185.01674
    [3]MA Jun. 一种基于频域信息的机械系统异常振动识别方法[J]. Chinese Journal of Ship Research, 2013, 8(3): 63-65,99. DOI: 10.3969/j.issn.1673-3185.2013.03.012
    [4]Wang Qi, Song Xiaodong, Xing Jian, Wang Yunhe. 舰船电力系统中智能电网技术的应用浅析[J]. Chinese Journal of Ship Research, 2012, 7(2): 72-74,96. DOI: 10.3969/j.issn.1673-3185.2012.02.013
    [5]Sun Qian, Chen Zhijian. 基于实船航行试验的舰船总振动阻尼识别方法[J]. Chinese Journal of Ship Research, 2011, 6(6): 34-37,44. DOI: 10.3969/j.issn.1673-3185.2011.06.007
    [6]Liu Song, Li Sheng, Zhao Deyou. Identification of the Surface Normal Velocity of a Structure Based on Phase Conjugation Method[J]. Chinese Journal of Ship Research, 2011, 6(4): 19-24. DOI: 10.3969/j.issn.1673-3185.2011.04.004
    [7]Liu Junhua, Meng Qingzheng, Yang Tao, Zhang Pinting. 船舶动力装置可组态智能故障诊断系统设计[J]. Chinese Journal of Ship Research, 2011, 6(2): 77-80. DOI: 10.3969/j.issn.1673-3185.2011.02.016
    [8]Xiao Shangqin, He Gang, Huang Jinfeng, Feng Tao. 基于知识库的舰船智能化设计系统[J]. Chinese Journal of Ship Research, 2010, 5(6): 93-97. DOI: 10.3969/j.issn.1673-3185.2010.06.019
    [9]Wang Yanxue, He Zhengjia, Cheng Wei, Chen Lue. Vibration Source Identification and Diagnosis Based on the Source Number Estimation for Ships[J]. Chinese Journal of Ship Research, 2010, 5(1): 1-5. DOI: 10.3969/j.issn.1673-3185.2010.01.001
    [10]Yu Duo, Ma Kun, Ji Zhuoshang. Identification of Damage Location in Ship Based on Nonlinear Programming[J]. Chinese Journal of Ship Research, 2008, 3(4): 22-25. DOI: 10.3969/j.issn.1673-3185.2008.04.006
  • Cited by

    Periodical cited type(7)

    1. 刘洋. 船舶营运碳强度新要求实施及注意事项. 航海技术. 2023(01): 76-79 .
    2. 李雯,孙晓伟,李海波. 我国船舶碳排放监管现状及监管体系构建研究. 中国水运. 2021(03): 122-125 .
    3. 郭惠. 基于分布式数据采集技术的船舶能效控制系统. 舰船科学技术. 2021(08): 118-120 .
    4. 耿新雷. 拖缆和阻尼器对船舶靠泊运动控制的研究. 中国水运. 2021(05): 120-121 .
    5. 侯存满. 船用柴油机气缸油消耗率均衡控制技术. 舰船科学技术. 2021(18): 115-117 .
    6. 丛岩,蔡国伟,池华方. 紫外强化有效氯对船舶尾气同时脱硫脱硝试验. 船舶工程. 2020(02): 99-103 .
    7. 赵瑞嘉,谢新连,赵家保,王郅翔. 基于交互式赋权与证据推理的船舶主机优选. 中国舰船研究. 2019(05): 22-27 . 本站查看

    Other cited types(5)

Catalog

    Article views (218) PDF downloads (65) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return