HU L, LI B C, YUAN Y P, et al. A review of metal hydride hydrogen storage technology for maritime applications[J]. Chinese Journal of Ship Research, 2024, 19(4): 32–47 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03772
Citation: HU L, LI B C, YUAN Y P, et al. A review of metal hydride hydrogen storage technology for maritime applications[J]. Chinese Journal of Ship Research, 2024, 19(4): 32–47 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03772

A review of metal hydride hydrogen storage technology for maritime applications

More Information
  • Received Date: January 29, 2024
  • Revised Date: May 17, 2024
  • Available Online: May 30, 2024
  • Published Date: July 11, 2024
© 2024 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Metal hydride hydrogen storage is a hydrogen storage method based on the principle of chemical absorption. Featuring high volumetric hydrogen storage density and high safety, its potential applications in the field of hydrogen storage on ships have attracted significant attention. Against this background, there is a series of issues to be studied, such as material properties, reactor performance, thermal management systems, cost, etc. This paper categorizes metal hydride hydrogen storage technology, summarizes its working principle and research progress on its material properties, and introduces its applications on ships. Next, combined with the application environment and demands of hydrogen ships, the paper analyzes the technological and economic feasibility of the application of metal hydride hydrogen storage technology on ships. To meet the requirements of hydrogen ships for hydrogen storage capacity and release rate, research on marine metal hydride hydrogen storage systems is introduced, including hydrogen storage system performance research, hydrogen storage reactor structure, reactor structure optimization and design ideas for thermal management systems coupled with marine fuel cell and hydrogen storage systems. Finally, the research direction of marine metal hydride hydrogen storage systems is predicted and summarized.

  • [1]
    童亮, 袁裕鹏, 李骁, 等. 我国氢动力船舶创新发展研究[J]. 中国工程科学, 2022, 24(3): 127–139. doi: 10.15302/J-SSCAE-2022.03.014

    TONG L, YUAN Y P, LI X, et al. Innovative developmental of hydrogen-powered ships in China[J]. Strategic Study of CAE, 2022, 24(3): 127–139 (in Chinese). doi: 10.15302/J-SSCAE-2022.03.014
    [2]
    SÜRER M G, ARAT H T. Advancements and current technologies on hydrogen fuel cell applications for marine vehicles[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19865–19875. doi: 10.1016/j.ijhydene.2021.12.251
    [3]
    TRONSTAD T, ÅSTRAND H H, HAUGOM G P, et al. Study on the use of fuel cells in shipping[R]. [S1.]: DNV GL, 2017 .
    [4]
    XING H, STUART C, SPENCE S, et al. Fuel cell power systems for maritime applications: progress and perspectives[J]. Sustainability, 2021, 13(3): 1213. doi: 10.3390/su13031213
    [5]
    李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586–594. doi: 10.12028/j.issn.2095-4239.2018.0062

    LI L L, FAN S S, CHEN Q X, et al. Hydrogen storage technology: current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586–594 (in Chinese). doi: 10.12028/j.issn.2095-4239.2018.0062
    [6]
    RAUCCI C, CALLEYA J, SUÁREZ DE LA FUENTE S, et al. Hydrogen on board ship: a first analysis of key parameters and implications[C]//Proceedings of the International Conference on Shipping in Changing Climates. Glasgow, UK: University of Strathclyde, 2015.
    [7]
    LI J Q, XU H, WANG J B, et al. A review of methods to study the fatigue life of nodes connecting marine composite hydrogen storage tanks to ships under the action of external forces[J]. Journal of Energy Storage, 2023, 72: 108367. doi: 10.1016/j.est.2023.108367
    [8]
    CUI W Y, YUAN Y P, WANG H Y, et al. Numerical investigation on the influence of geometrical parameters on the temperature distribution in marine hydrogen storage tanks during filling[J]. International Journal of Hydrogen Energy, 2024, 51: 61–71.
    [9]
    BARTHÉLÉMY H. Hydrogen storage–industrial prospectives[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17364–17372. doi: 10.1016/j.ijhydene.2012.04.121
    [10]
    GODULA-JOPEK A, JEHLE W, WELLNITZ J. Storage of pure hydrogen in different states[M]//GODULA-JOPEK A, JEHLE W, WELLNITZ J. Hydrogen Storage Technologies: New Materials, Transport and Infrastructure. Weinheim: Wiley-VCH, 2012: 97-170.
    [11]
    TANG D, TAN G L, LI G W, et al. State-of-the-art hydrogen generation techniques and storage methods: a critical review[J]. Journal of Energy Storage, 2023, 64: 107196. doi: 10.1016/j.est.2023.107196
    [12]
    ACEVES S M, PETITPAS G, ESPINOSA-LOZA F, et al. Safe, long range, inexpensive and rapidly refuelable hydrogen vehicles with cryogenic pressure vessels[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2480–2489. doi: 10.1016/j.ijhydene.2012.11.123
    [13]
    ZHANG T T, URATANI J, HUANG Y X, et al. Hydrogen liquefaction and storage: recent progress and perspectives[J]. Renewable and Sustainable Energy Reviews, 2023, 176: 113204. doi: 10.1016/j.rser.2023.113204
    [14]
    LOTOTSKYY M, YARTYS V A. Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials[J]. Journal of Alloys and Compounds, 2015, 645: S365–S373. doi: 10.1016/j.jallcom.2014.12.107
    [15]
    LOTOTSKYY M V, TOLJ I, PICKERING L, et al. The use of metal hydrides in fuel cell applications[J]. Progress in Natural Science: Materials International, 2017, 27(1): 3–20. doi: 10.1016/j.pnsc.2017.01.008
    [16]
    HASSAN I A, RAMADAN H S, SALEH M A, et al. Hydrogen storage technologies for stationary and mobile applications: review, analysis and perspectives[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111311. doi: 10.1016/j.rser.2021.111311
    [17]
    DRAWER C, LANGE J, KALTSCHMITT M. Metal hydrides for hydrogen storage–Identification and evaluation of stationary and transportation applications[J]. Journal of Energy Storage, 2024, 77: 109988. doi: 10.1016/j.est.2023.109988
    [18]
    马通祥, 高雷章, 胡蒙均, 等. 固体储氢材料研究进展[J]. 功能材料, 2018, 49(4): 4001–4006.

    MA T X, GAO L Z, HU M J, et al. Research progress of solid hydrogen storage materials[J]. Journal of Functional Materials, 2018, 49(4): 4001–4006 (in Chinese).
    [19]
    BHUIYA M M H, KUMAR A, KIM K J. Metal hydrides in engineering systems, processes, and devices: a review of non-storage applications[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2231–2247. doi: 10.1016/j.ijhydene.2014.12.009
    [20]
    LEDOVSKIKH A V, DANILOV D L, VLIEX M, et al. Modeling and experimental verification of the thermodynamic properties of hydrogen storage materials[J]. International Journal of Hydrogen Energy, 2016, 41(6): 3904–3918. doi: 10.1016/j.ijhydene.2015.11.038
    [21]
    KLOPČIČ N, GRIMMER I, WINKLER F, et al. A review on metal hydride materials for hydrogen storage[J]. Journal of Energy Storage, 2023, 72: 108456. doi: 10.1016/j.est.2023.108456
    [22]
    GONG A, VERSTRAETE D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: current status and research needs[J]. International Journal of Hydrogen Energy, 2017, 42(33): 21311–21333. doi: 10.1016/j.ijhydene.2017.06.148
    [23]
    张晓飞, 蒋利军, 叶建华, 等. 固态储氢技术的研究进展[J]. 太阳能学报, 2022, 43(6): 345–354.

    ZHANG X F, JIANG L J, YE J H, et al. Research progress of solid-state hydrogen storage teachnology[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 345–354 (in Chinese).
    [24]
    LOTOTSKYY M V, YARTYS V A, POLLET B G, et al. Metal hydride hydrogen compressors: a review[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5818–5851. doi: 10.1016/j.ijhydene.2014.01.158
    [25]
    NYAMSI S N, WU Z, ZHANG Z X, et al. Dehydrogenation performance of metal hydride container utilising MgH2-based composite[J]. Applied Thermal Engineering, 2022, 209: 118314. doi: 10.1016/j.applthermaleng.2022.118314
    [26]
    DONG Z Z, WANG Y, WU H R, et al. A design methodology of large-scale metal hydride reactor based on schematization for hydrogen storage[J]. Journal of Energy Storage, 2022, 49: 104047. doi: 10.1016/j.est.2022.104047
    [27]
    SHARMA V K, KUMAR E A. Effect of measurement parameters on thermodynamic properties of La-based metal hydrides[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5888–5898. doi: 10.1016/j.ijhydene.2014.01.174
    [28]
    DEKHTYARENKO V A, SAVVAKIN D G, BONDARCHUK V I, et al. TiMn2-based intermetallic alloys for hydrogen accumulation: problems and prospects[J]. Progress in Physics of Metals, 2021, 22(3): 307–351. doi: 10.15407/ufm.22.03.307
    [29]
    HUANG T Z, WU Z, YU X B, et al. Hydrogen absorption–desorption behavior of zirconium-substituting Ti–Mn based hydrogen storage alloys[J]. Intermetallics, 2004, 12(1): 91–96. doi: 10.1016/j.intermet.2003.08.005
    [30]
    BOBET J L, DARRIET B. Relationship between hydrogen sorption properties and crystallography for TiMn2 based alloys[J]. International Journal of Hydrogen Energy, 2000, 25(8): 767–772. doi: 10.1016/S0360-3199(99)00101-9
    [31]
    WANG Y, WANG Y J. Recent advances in additive-enhanced magnesium hydride for hydrogen storage[J]. Progress in Natural Science: Materials International, 2017, 27(1): 41–49. doi: 10.1016/j.pnsc.2016.12.016
    [32]
    ĆIRIĆ K D, KOCJAN A, GRADIŠEK A, et al. A study on crystal structure, bonding and hydriding properties of Ti–Fe–Ni intermetallics–Behind substitution of iron by nickel[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8408–8417. doi: 10.1016/j.ijhydene.2012.02.047
    [33]
    ABRASHEV B, SPASSOV T, BLIZNAKOV S, et al. Microstructure and electrochemical hydriding/dehydriding properties of ball-milled TiFe-based alloys[J]. International Journal of Hydrogen Energy, 2010, 35(12): 6332–6337. doi: 10.1016/j.ijhydene.2010.03.129
    [34]
    QU H Q, DU J L, PU C H, et al. Effects of Co introduction on hydrogen storage properties of Ti–Fe–Mn alloys[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2729–2735. doi: 10.1016/j.ijhydene.2014.12.089
    [35]
    RAHNAMA A, ZEPON G, SRIDHAR S. Machine learning based prediction of metal hydrides for hydrogen storage, part II: prediction of material class[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7345–7353. doi: 10.1016/j.ijhydene.2019.01.264
    [36]
    SUWARNO S, DICKY G, SUYUTHI A, et al. Machine learning analysis of alloying element effects on hydrogen storage properties of AB2 metal hydrides[J]. International Journal of Hydrogen Energy, 2022, 47(23): 11938–11947. doi: 10.1016/j.ijhydene.2022.01.210
    [37]
    RAHNAMA A, ZEPON G, SRIDHAR S. Machine learning based prediction of metal hydrides for hydrogen storage, part I: prediction of hydrogen weight percent[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7337–7344. doi: 10.1016/j.ijhydene.2019.01.261
    [38]
    HATTRICK-SIMPERS J R, CHOUDHARY K, CORGNALE C. A simple constrained machine learning model for predicting high-pressure-hydrogen-compressor materials[J]. Molecular Systems Design & Engineering, 2018, 3(3): 509–517.
    [39]
    WITMAN M, LING S L, GRANT D M, et al. Extracting an empirical intermetallic hydride design principle from limited data via interpretable machine learning[J]. The Journal of Physical Chemistry Letters, 2020, 11(1): 40–47. doi: 10.1021/acs.jpclett.9b02971
    [40]
    DANEBERGS J, DELEDDA S. Can hydrogen storage in metal hydrides be economically competitive with compressed and liquid hydrogen storage? A techno-economical perspective for the maritime sector[J]. International Journal of Hydrogen Energy, 2024, 50: 1040–1054. doi: 10.1016/j.ijhydene.2023.08.313
    [41]
    SWIDER-LYONS K, DEITZ D. Hydrogen fuel cells for unmanned undersea vehicle propulsion[J]. ECS Transactions, 2016, 75(14): 479–489. doi: 10.1149/07514.0479ecst
    [42]
    WANG Z, LI M Y, ZHAO F, et al. Status and prospects in technical standards of hydrogen-powered ships for advancing maritime zero-carbon transformation[J]. International Journal of Hydrogen Energy, 2024, 62: 925–946. doi: 10.1016/j.ijhydene.2024.03.083
    [43]
    VON COLBE J B, ARES J R, BARALE J, et al. Application of hydrides in hydrogen storage and compression: achievements, outlook and perspectives[J]. International Journal of Hydrogen Energy, 2019, 44(15): 7780–7808. doi: 10.1016/j.ijhydene.2019.01.104
    [44]
    徐晓健, 杨瑞, 纪永波, 等. 氢燃料电池动力船舶关键技术综述[J]. 交通运输工程学报, 2022, 22(4): 47–67.

    XU X J, YANG R, JI Y B, et al. Review on key technologies of hydrogen fuel cell powered vessels[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 47–67 (in Chinese).
    [45]
    HYAKUDOME T, YOSHIDA H, TSUKIOKA S, et al. High efficiency hydrogen and oxygen storage system development for underwater platforms powered by fuel cell[J]. ECS Transactions, 2010, 26(1): 465–474. doi: 10.1149/1.3429019
    [46]
    BEVAN A I, ZÜTTEL A, BOOK D, et al. Performance of a metal hydride store on the “Ross Barlow” hydrogen powered canal boat[J]. Faraday Discussions, 2011, 151: 353–367. doi: 10.1039/c0fd00025f
    [47]
    CAVO M, GADDUCCI E, RATTAZZI D, et al. Dynamic analysis of PEM fuel cells and metal hydrides on a zero-emission ship: a model-based approach[J]. International Journal of Hydrogen Energy, 2021, 46(64): 32630–32644. doi: 10.1016/j.ijhydene.2021.07.104
    [48]
    MCKINLAY C J, TURNOCK S R, HUDSON D A. Route to zero emission shipping: hydrogen, ammonia or methanol?[J]. International Journal of Hydrogen Energy, 2021, 46(55): 28282–28297. doi: 10.1016/j.ijhydene.2021.06.066
    [49]
    DI MICCO S, MASTROPASQUA L, CIGOLOTTI V, et al. A framework for the replacement analysis of a hydrogen-based polymer electrolyte membrane fuel cell technology on board ships: a step towards decarbonization in the maritime sector[J]. Energy Conversion and Management, 2022, 267: 115893. doi: 10.1016/j.enconman.2022.115893
    [50]
    RIVAROLO M, PICCARDO S, MONTAGNA G N, et al. A multi-criteria approach for comparing alternative fuels and energy systems onboard ships[J]. Energy Conversion and Management: X, 2023, 20: 100460. doi: 10.1016/j.ecmx.2023.100460
    [51]
    REDDI K, ELGOWAINY A, RUSTAGI N, et al. Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21855–21865. doi: 10.1016/j.ijhydene.2017.05.122
    [52]
    DEMIR M E, DINCER I. Cost assessment and evaluation of various hydrogen delivery scenarios[J]. International Journal of Hydrogen Energy, 2018, 43(22): 10420–10430. doi: 10.1016/j.ijhydene.2017.08.002
    [53]
    杜泽学, 慕旭宏. 分布式制氢技术的发展及应用前景展望[J]. 石油炼制与化工, 2021, 52(1): 1–9. doi: 10.3969/j.issn.1005-2399.2021.01.001

    DU Z X, MU X H. Review and application prospect on distributed hydrogen production technology[J]. Petroleum Processing and Petrochemicals, 2021, 52(1): 1–9 (in Chinese). doi: 10.3969/j.issn.1005-2399.2021.01.001
    [54]
    KU A Y, REDDI K, ELGOWAINY A, et al. Liquid pump-enabled hydrogen refueling system for medium and heavy duty fuel cell vehicles: station design and technoeconomic assessment[J]. International Journal of Hydrogen Energy, 2022, 47(61): 25486–25498. doi: 10.1016/j.ijhydene.2022.05.283
    [55]
    LI M X, BAI Y F, ZHANG C Z, et al. Review on the research of hydrogen storage system fast refueling in fuel cell vehicle[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10677–10693. doi: 10.1016/j.ijhydene.2019.02.208
    [56]
    杨欣, 王文, 徐凯, 等. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(增刊1): 280–286. doi: 10.11949/0438-1157.20221624

    YANG X, WANG W, XU K, et al. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process[J]. CIESC Journal, 2023, 74(Supp 1): 280–286 (in Chinese). doi: 10.11949/0438-1157.20221624
    [57]
    Hydrogen and Fuel Cell Technologies Office. DOE technical targets for onboard hydrogen storage for light-duty vehicles[EB/OL]. Washington DC: U.S. Department of Energy, 2017.https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles
    [58]
    BROOKS K P, ALVINE K J, JOHNSON K I, et al. PNNL development and analysis of material-based hydrogen storage systems for the hydrogen storage engineering center of excellence: PNNL-25234[R]. Richland: Pacific Northwest National Lab. , 2016.
    [59]
    王春梅, 刘玉柱, 赵龙胜, 等. 我国稀土材料与绿色制备技术现状与发展趋势[J]. 中国材料进展, 2018, 37(11): 841–847, 879.

    WANG C M, LIU Y Z, ZHAO L S, et al. Current situation and development tendency on rare earth materials and its green preparation technologies in China[J]. Materials China, 2018, 37(11): 841–847, 879 (in Chinese).
    [60]
    AMICA G, LAROCHETTE P A, GENNARI F C. Light metal hydride-based hydrogen storage system: economic assessment in Argentina[J]. International Journal of Hydrogen Energy, 2020, 45(38): 18789–18801. doi: 10.1016/j.ijhydene.2020.05.036
    [61]
    殷凡青, 姜良超, 程吉鹏. 一种车载轻质高压金属氢化物复合式储氢罐设计[J]. 汽车实用技术, 2018, 44(7): 148–150.

    YIN F Q, JIANG L C, CHENG J P. A design of vehicular lightweight high pressure metal hydride composite hydrogen storage tank[J]. Automobile Applied Technology, 2018, 44(7): 148–150 (in Chinese).
    [62]
    WECKERLE C, NASRI M, HEGNER R, et al. A metal hydride air-conditioning system for fuel cell vehicles–Functional demonstration[J]. Applied Energy, 2020, 259: 114187. doi: 10.1016/j.apenergy.2019.114187
    [63]
    MELLOULI S, BEN KHEDHER N, ASKRI F, et al. Numerical analysis of metal hydride tank with phase change material[J]. Applied Thermal Engineering, 2015, 90: 674–682. doi: 10.1016/j.applthermaleng.2015.07.022
    [64]
    KAPLAN Y. Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors[J]. International Journal of Hydrogen Energy, 2009, 34(5): 2288–2294. doi: 10.1016/j.ijhydene.2008.12.096
    [65]
    BÜRGER I, DIETERICH M, POHLMANN C, et al. Standardized hydrogen storage module with high utilization factor based on metal hydride-graphite composites[J]. Journal of Power Sources, 2017, 342: 970–979. doi: 10.1016/j.jpowsour.2016.12.108
    [66]
    PANDEY V, KRISHNA K V, MAIYA M P. Numerical modelling and heat transfer optimization of large-scale multi-tubular metal hydride reactors[J]. International Journal of Hydrogen Energy, 2023, 48(42): 16020–16036. doi: 10.1016/j.ijhydene.2023.01.058
    [67]
    GOPAL M R, MURTHY S S. Prediction of heat and mass transfer in annular cylindrical metal hydride beds[J]. International Journal of Hydrogen Energy, 1992, 17(10): 795–805. doi: 10.1016/0360-3199(92)90024-Q
    [68]
    程涛, 杨雪, 林伟. 基于金属氢化物储氢的热管理技术研究进展[J]. 石油炼制与化工, 2023, 54(9): 8–17. doi: 10.3969/j.issn.1005-2399.2023.09.003

    CHENG T, YANG X, LIN W. Progress in thermal management technology for hydrogen storage based on metal hydride[J]. Petroleum Processing and Petrochemicals, 2023, 54(9): 8–17 (in Chinese). doi: 10.3969/j.issn.1005-2399.2023.09.003
    [69]
    HU H T, ZHAO Y X, LI Y H. Research progress on flow and heat transfer characteristics of fluids in metal foams[J]. Renewable and Sustainable Energy Reviews, 2023, 171: 113010. doi: 10.1016/j.rser.2022.113010
    [70]
    LAURENCELLE F, GOYETTE J. Simulation of heat transfer in a metal hydride reactor with aluminium foam[J]. International Journal of Hydrogen Energy, 2007, 32(14): 2957–2964. doi: 10.1016/j.ijhydene.2006.12.007
    [71]
    CHEN Y, SEQUEIRA C A C, CHEN C P, et al. Metal hydride beds and hydrogen supply tanks as minitype PEMFC hydrogen sources[J]. International Journal of Hydrogen Energy, 2003, 28(3): 329–333. doi: 10.1016/S0360-3199(02)00064-2
    [72]
    MANAI M S, LETURIA M, POHLMANN C, et al. Comparative study of different storage bed designs of a solid-state hydrogen tank[J]. Journal of Energy Storage, 2019, 26: 101024. doi: 10.1016/j.est.2019.101024
    [73]
    MACDONALD B D, ROWE A M. Impacts of external heat transfer enhancements on metal hydride storage tanks[J]. International Journal of Hydrogen Energy, 2006, 31(12): 1721–1731. doi: 10.1016/j.ijhydene.2006.01.007
    [74]
    ASKRI F, BEN SALAH M, JEMNI A, et al. Optimization of hydrogen storage in metal-hydride tanks[J]. International Journal of Hydrogen Energy, 2009, 34(2): 897–905. doi: 10.1016/j.ijhydene.2008.11.021
    [75]
    MELLOULI S, ASKRI F, DHAOU H, et al. A novel design of a heat exchanger for a metal-hydrogen reactor[J]. International Journal of Hydrogen Energy, 2007, 32(15): 3501–3507. doi: 10.1016/j.ijhydene.2007.02.039
    [76]
    MA J C, WANG Y Q, SHI S F, et al. Optimization of heat transfer device and analysis of heat & mass transfer on the finned multi-tubular metal hydride tank[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13583–13595. doi: 10.1016/j.ijhydene.2014.03.016
    [77]
    NGUYEN H Q, SHABANI B. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems[J]. International Journal of Hydrogen Energy, 2021, 46(62): 31699–31726. doi: 10.1016/j.ijhydene.2021.07.057
    [78]
    ANBARASU S, MUTHUKUMAR P, MISHRA S C. Thermal modeling of LmNi4.91Sn0.15 based solid state hydrogen storage device with embedded cooling tubes[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15549–15562. doi: 10.1016/j.ijhydene.2014.07.088
    [79]
    NYAMSI S N, YANG F S, ZHANG Z X. An optimization study on the finned tube heat exchanger used in hydride hydrogen storage system–analytical method and numerical simulation[J]. International Journal of Hydrogen Energy, 2012, 37(21): 16078–16092. doi: 10.1016/j.ijhydene.2012.08.074
    [80]
    TONG L, XIAO J S, YANG T Q, et al. Complete and reduced models for metal hydride reactor with coiled-tube heat exchanger[J]. International Journal of Hydrogen Energy, 2019, 44(30): 15907–15916. doi: 10.1016/j.ijhydene.2018.07.102
    [81]
    TIWARI S, GUPTA N, KUMAR S, et al. Experimental investigation, development of machine learning model and optimization studies of a metal hydride reactor with embedded helical cooling tube[J]. Journal of Energy Storage, 2023, 72: 108522. doi: 10.1016/j.est.2023.108522
    [82]
    BAI X S, YANG W W, TANG X Y, et al. Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: a numerical study[J]. Energy, 2021, 220: 119738. doi: 10.1016/j.energy.2020.119738
    [83]
    SHAMBERGER P J, BRUNO N M. Review of metallic phase change materials for high heat flux transient thermal management applications[J]. Applied Energy, 2020, 258: 113955. doi: 10.1016/j.apenergy.2019.113955
    [84]
    GARRIER S, DELHOMME B, DE RANGO P, et al. A new MgH2 tank concept using a phase-change material to store the heat of reaction[J]. International Journal of Hydrogen Energy, 2013, 38(23): 9766–9771. doi: 10.1016/j.ijhydene.2013.05.026
    [85]
    EL MGHARI H, HUOT J, TONG L, et al. Selection of phase change materials, metal foams and geometries for improving metal hydride performance[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14922–14939. doi: 10.1016/j.ijhydene.2020.03.226
    [86]
    BEN MÂAD H, ASKRI F, NASRALLAH S B. Heat and mass transfer in a metal hydrogen reactor equipped with a phase-change heat-exchanger[J]. International Journal of Thermal Sciences, 2016, 99: 271–278. doi: 10.1016/j.ijthermalsci.2015.09.003
    [87]
    TONG L, XIAO J S, BÉNARD P, et al. Thermal management of metal hydride hydrogen storage reservoir using phase change materials[J]. International Journal of Hydrogen Energy, 2019, 44(38): 21055–21066. doi: 10.1016/j.ijhydene.2019.03.127
    [88]
    ALQAHTANI T, MELLOULI S, BAMASAG A, et al. Thermal performance analysis of a metal hydride reactor encircled by a phase change material sandwich bed[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23076–23092. doi: 10.1016/j.ijhydene.2020.06.126
    [89]
    MELLOULI S, ASKRI F, ABHILASH E, et al. Impact of using a heat transfer fluid pipe in a metal hydride-phase change material tank[J]. Applied Thermal Engineering, 2017, 113: 554–565. doi: 10.1016/j.applthermaleng.2016.11.065
    [90]
    YU Y, CHEN M, ZAMAN S, et al. Thermal management system for liquid-cooling PEMFC stack: from primary configuration to system control strategy[J]. ETransportation, 2022, 12: 100165. doi: 10.1016/j.etran.2022.100165
    [91]
    DAUD W R W, ROSLI R E, MAJLAN E H, et al. PEM fuel cell system control: a review[J]. Renewable Energy, 2017, 113: 620–638. doi: 10.1016/j.renene.2017.06.027
    [92]
    TONG L, YUAN C Q, YANG T Q, et al. Thermal management of metal hydride hydrogen storage tank coupled with proton exchange membrane fuel cells[J]. Case Studies in Thermal Engineering, 2023, 43: 102812. doi: 10.1016/j.csite.2023.102812
    [93]
    LIU J X, YANG F S, WU Z, et al. A review of thermal coupling system of fuel cell-metal hydride tank: classification, control strategies, and prospect in distributed energy system[J]. International Journal of Hydrogen Energy, 2024, 51: 274–289. doi: 10.1016/j.ijhydene.2023.04.232
    [94]
    FU Z H, LU L, ZHANG C Z, et al. Fuel cell and hydrogen in maritime application: a review on aspects of technology, cost and regulations[J]. Sustainable Energy Technologies and Assessments, 2023, 57: 103181. doi: 10.1016/j.seta.2023.103181
    [95]
    侯健, 杨铮, 贺婷, 等. 质子交换膜燃料电池热管理问题的研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 19–30.

    HOU J, YANG Z, HE T, et al. Research progress on thermal management of proton exchange membrane fuel cells[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 19–30 (in Chinese).
    [96]
    YANG L, NIK-GHAZALI N N, ALI M A H, et al. A review on thermal management in proton exchange membrane fuel cells: temperature distribution and control[J]. Renewable and Sustainable Energy Reviews, 2023, 187: 113737. doi: 10.1016/j.rser.2023.113737
    [97]
    GKANAS E I, MAKRIDIS S S. Effective thermal management of a cylindrical MgH2 tank including thermal coupling with an operating SOFC and the usage of extended surfaces during the dehydrogenation process[J]. International Journal of Hydrogen Energy, 2016, 41(13): 5693–5708. doi: 10.1016/j.ijhydene.2016.01.165
    [98]
    DELHOMME B, LANZINI A, ORTIGOZA-VILLALBA G A, et al. Coupling and thermal integration of a solid oxide fuel cell with a magnesium hydride tank[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4740–4747. doi: 10.1016/j.ijhydene.2013.01.140
    [99]
    SHAO H Y. Heat modeling and material development of Mg-based nanomaterials combined with solid oxide fuel cell for stationary energy storage[J]. Energies, 2017, 10(11): 1767. doi: 10.3390/en10111767
    [100]
    ZHU D, AIT-AMIRAT Y, N’DIAYE A, et al. Active thermal management between proton exchange membrane fuel cell and metal hydride hydrogen storage tank considering long-term operation[J]. Energy Conversion and Management, 2019, 202: 112187. doi: 10.1016/j.enconman.2019.112187
    [101]
    GHAYUR A, VERHEYEN T V. Increasing hydrogen energy efficiency by heat integration between fuel cell, hydride tank and electrolyzer[C]//Proceedings of 2019 IEEE Asia-Pacific Conference on Computer Science and Data Engineering. Melbourne: IEEE, 2019: 1-4.
    [102]
    WANG Y H, ZHANG H Y, QI J H, et al. Thermodynamic and exergy analysis of a novel PEMFC-ORC-MH combined integrated energy system[J]. Energy Conversion and Management, 2022, 264: 115709. doi: 10.1016/j.enconman.2022.115709
    [103]
    WANG Y H, ZHANG H Y, HE S Y, et al. Dynamic analysis and control optimization of hydrogen supply for the proton exchange membrane fuel cell and metal hydride coupling system with a hydrogen buffer tank[J]. Energy Conversion and Management, 2023, 291: 117339. doi: 10.1016/j.enconman.2023.117339
    [104]
    XIAO J S, TONG L, BÉNARD P, et al. Thermodynamic analysis for hydriding-dehydriding cycle of metal hydride system[J]. Energy, 2020, 191: 116535. doi: 10.1016/j.energy.2019.116535
  • Related Articles

    [1]LIANG Qian. 基于PDM的船舶修理项目管理系统设计[J]. Chinese Journal of Ship Research, 2013, 8(5): 117-121. DOI: 10.3969/j.issn.1673-3185.2013.05.020
    [2]ZHENG Chunbing. 船用燃气轮机回热器设计的数值研究[J]. Chinese Journal of Ship Research, 2012, 7(5): 79-82. DOI: 10.3969/j.issn.1673-3185.2012.05.014
    [3]XING Lili, YU Tao, YAN Xuekun, LIU Cuihong, DUAN Zaiyu. 核动力装置回路水中氚监测用于传热管破损诊断的可行性分析[J]. Chinese Journal of Ship Research, 2012, 7(4): 105-107. DOI: 10.3969/j.issn.1673-3185.2012.04.018
    [4]Ning Xiaomin, Yang Bin, Wang Yi, Xie Wei. 基于Web的船舶信息集成管理系统的设计及实现[J]. Chinese Journal of Ship Research, 2011, 6(3): 99-102. DOI: 10.3969/j.issn.1673-3185.2011.03.021
    [5]Song Bo. 船舶能量管理系统设计研究[J]. Chinese Journal of Ship Research, 2011, 6(2): 93-97. DOI: 10.3969/j.issn.1673-3185.2011.02.020
    [6]Cao Lin. 水面舰船火灾烟雾的控制和管理方法[J]. Chinese Journal of Ship Research, 2011, 6(2): 84-87. DOI: 10.3969/j.issn.1673-3185.2011.02.018
    [7]Zhou Zhijie, Dong Renyi, Peng Guangming, Peng Wenbo. 潜艇舱室热管理技术[J]. Chinese Journal of Ship Research, 2010, 5(1): 56-59. DOI: 10.3969/j.issn.1673-3185.2010.01.013
    [8]Xiong Ying, Xu Jian, Luo Liqiang, Wei Song. OPC技术在船舶综合平台管理系统中的应用[J]. Chinese Journal of Ship Research, 2009, 4(6): 58-61,65. DOI: 10.3969/j.issn.1673-3185.2009.06.013
    [9]Wei Song, Xiong Ying, Hu Peng, Gong Chun. 通用船舶综合平台管理系统模型研究[J]. Chinese Journal of Ship Research, 2008, 3(5): 57-61. DOI: 10.3969/j.issn.1673-3185.2008.05.013
    [10]Guo Jintao, Li Junhua, Cheng Lan, Feng Baiwei, Xiao Jun. Workflow Management for the Ship Design Process[J]. Chinese Journal of Ship Research, 2007, 2(1): 42-45. DOI: 10.3969/j.issn.1673-3185.2007.01.009

Catalog

    Article views (990) PDF downloads (134) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return