LI Hongyue, WANG Xihuai, XIAO Jianmei. Electric propulsion ship secondary frequency control based on variable universe fuzzy method[J]. Chinese Journal of Ship Research, 2018, 13(4): 142-148. DOI: 10.19693/j.issn.1673-3185.01031
Citation: LI Hongyue, WANG Xihuai, XIAO Jianmei. Electric propulsion ship secondary frequency control based on variable universe fuzzy method[J]. Chinese Journal of Ship Research, 2018, 13(4): 142-148. DOI: 10.19693/j.issn.1673-3185.01031

Electric propulsion ship secondary frequency control based on variable universe fuzzy method

More Information
  • Received Date: June 21, 2017
  • Available Online: May 07, 2021
© 2018 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  This paper aims to solve the frequency fluctuation in a ship's power system caused by power disturbances.
      Methods  To this end, a battery energy storage method is introduced to balance the output power and demand power, and the variable universe fuzzy method is utilized for the secondary frequency control of the ship's power system. In order to improve the control precision, area control error and change rate of the controller input, an incremental method is used to design a scaling factor that will expand or reduce the universe in case the control rule is unchanged.
      Results  The simulation results show that a ship's power system which contains a battery can reduce the frequency fluctuation and make it stable in a short time.
      Conclusions  Compared with the traditional fuzzy control, the proposed method offers better performance under external disturbances and parameter perturbation. The proposal in this paper can guarantee robust stability and robust performance.
  • [1]
    马伟明.电力电子在舰船电力系统中的典型应用[J].电工技术学报, 2011, 26(5):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdldxxb200102003

    MA W M. Typical applications of power electronics in naval ship power systems[J]. Transactions of China Electrotechnical Society, 2011, 26(5):1-7(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdldxxb200102003
    [2]
    付立军, 刘鲁锋, 王刚, 等.我国舰船中压直流综合电力系统研究进展[J].中国舰船研究, 2016, 11(1):72-79. http://www.ship-research.com/CN/abstract/abstract1503.shtml

    FU L J, LIU L F, WANG G, et al. The research progress of the medium voltage DC integrated power system in China[J]. Chinese Journal of Ship Research, 2016, 11(1):72-79(in Chinese). http://www.ship-research.com/CN/abstract/abstract1503.shtml
    [3]
    CHANG X Y, LI Y L, ZHANG W Y, et al. Active disturbance rejection control for a flywheel energy storage system[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2):991-1001. doi: 10.1109/TIE.2014.2336607
    [4]
    LEHTIMÄKI S, LI M, SALOMAA J, et al. Performance of printable supercapacitors in an RF energy harvesting circuit[J]. International Journal of Electrical Power & Energy Systems, 2014, 58:42-46. http://linkinghub.elsevier.com/retrieve/pii/S0142061514000052
    [5]
    PARK H, SUN J, PEKAREK S, et al. Real-time model predictive control for shipboard power management using the IPA-SQP approach[J]. IEEE Transactions on Control Systems Technology, 2015, 23(6):2129-2143. doi: 10.1109/TCST.2015.2402233
    [6]
    米阳, 王成山.基于负荷估计的光柴独立微网频率优化控制[J].中国电机工程学报, 2013, 33(34):115-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201334015

    MI Y, WANG C S. Frequency optimization control for isolated photovoltaic-diesel hybrid microgrid based on load estimation[J]. Proceedings of the CSEE, 2013, 33(34):115-121(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201334015
    [7]
    MI Y, FU Y, LI D D, et al. The sliding mode load frequency control for hybrid power system based on disturbance observer[J]. International Journal of Electrical Power & Energy Systems, 2016, 74:446-452. http://linkinghub.elsevier.com/retrieve/pii/S0142061515003002
    [8]
    LIU X J, KONG X B, LEE K Y. Distributed model predictive control for load frequency control with dynamic fuzzy valve position modelling for hydro-thermal power system[J]. IET Control Theory & Applications, 2016, 10(14):1653-1664. doi: 10.1049/iet-cta.2015.1021
    [9]
    ERSDAL A M, IMSLAND L, UHLEN K. Model predictive load-frequency control[J]. IEEE Transactions on Power Systems, 2016, 31(1):777-785. doi: 10.1109/TPWRS.2015.2412614
    [10]
    ELSISI M, SOLIMAN M, ABOELELA M A S, et al. Bat inspired algorithm based optimal design of model predictive load frequency control[J]. International Journal of Electrical Power & Energy Systems, 2016, 83:426-433. http://linkinghub.elsevier.com/retrieve/pii/S014206151630713X
    [11]
    SUN Y H, LI N, ZHAO X M, et al. Robust H load frequency control of delayed multi-area power system with stochastic disturbances[J]. Neurocomputing, 2016, 193:58-67. doi: 10.1016/j.neucom.2016.01.066
    [12]
    SARGOLZAEI A, YEN K K, ABDELGHANI M N. Preventing time-delay switch attack on load frequency control in distributed power systems[J]. IEEE Transactions on Smart Grid, 2016, 7(2):1176-1185. http://dblp.uni-trier.de/db/journals/tsg/tsg7.html#SargolzaeiYA16
    [13]
    BEVRANI H, FEIZI M R, ATAEE S. Robust frequency control in an islanded microgrid:H and μ-synthesis approaches[J]. IEEE Transactions on Smart Grid, 2016, 7(2):706-717. http://ieeexplore.ieee.org/document/7159089/
    [14]
    CHUANG N. Robust H load frequency control in interconnected power systems[J]. IET Control Theory & Applications, 2016, 10(1):67-75. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7362314
    [15]
    ZHANG S Q, MISHRA Y, SHAHIDEHPOUR M. Fuzzy-logic based frequency controller for wind farms augmented with energy storage systems[J]. IEEE Transactions on Power Systems, 2016, 31(2):1595-1603. doi: 10.1109/TPWRS.2015.2432113
    [16]
    MAHTO T, MUKHERJEE V. A novel scaling factor based fuzzy logic controller for frequency control of an isolated hybrid power system[J]. Energy, 2017, 130:339-350. doi: 10.1016/j.energy.2017.04.155
    [17]
    SASAKI T, KADOYA T, ENOMOTO K. Study on load frequency control using redox flow batteries[J]. IEEE Transactions on Power Systems, 2004, 19(1):660-667. doi: 10.1109/TPWRS.2003.818724
    [18]
    郭海刚, 李洪兴, 胡凯.一类变论域自适应模糊控制器[J].模糊系统与数学, 2011, 25(6):32-42. http://www.doc88.com/p-0911981067322.html

    GUO H G, LI H X, HU K. A novel variable universe adaptive fuzzy controller[J]. Fuzzy Systems and Mathematics, 2011, 25(6):32-42(in Chinese). http://www.doc88.com/p-0911981067322.html
    [19]
    王志新.智能模糊控制的若干问题研究[M].北京:知识产权出版社, 2009:139-145.
    [20]
    李洪兴, 汪群, 段钦治, 等.工程模糊数学方法及应用[M].天津:天津科学技术出版社, 1993.
    [21]
    BØ T I, JOHANSEN T A. Battery power smoothing control in a marine electric power plant using nonlinear model predictive control[J]. IEEE Transactions on Control Systems Technology, 2016, 25(4):1449-1456. http://dblp.uni-trier.de/db/journals/tcst/tcst25.html#BoJ17
    [22]
    卢贤基. 船舶发电柴油机调速系统的研究与设计[D]. 大连: 大连海事大学, 2013.
    [23]
    刘珊珊. 基于模糊控制的船舶电站自动调频调载装置的研究与设计[D]. 大连: 大连海事大学, 2007.

Catalog

    Article views (451) PDF downloads (146) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return