Citation: | LI Hongyue, WANG Xihuai, XIAO Jianmei. Electric propulsion ship secondary frequency control based on variable universe fuzzy method[J]. Chinese Journal of Ship Research, 2018, 13(4): 142-148. DOI: 10.19693/j.issn.1673-3185.01031 |
[1] |
马伟明.电力电子在舰船电力系统中的典型应用[J].电工技术学报, 2011, 26(5):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdldxxb200102003
MA W M. Typical applications of power electronics in naval ship power systems[J]. Transactions of China Electrotechnical Society, 2011, 26(5):1-7(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdldxxb200102003
|
[2] |
付立军, 刘鲁锋, 王刚, 等.我国舰船中压直流综合电力系统研究进展[J].中国舰船研究, 2016, 11(1):72-79. http://www.ship-research.com/CN/abstract/abstract1503.shtml
FU L J, LIU L F, WANG G, et al. The research progress of the medium voltage DC integrated power system in China[J]. Chinese Journal of Ship Research, 2016, 11(1):72-79(in Chinese). http://www.ship-research.com/CN/abstract/abstract1503.shtml
|
[3] |
CHANG X Y, LI Y L, ZHANG W Y, et al. Active disturbance rejection control for a flywheel energy storage system[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2):991-1001. doi: 10.1109/TIE.2014.2336607
|
[4] |
LEHTIMÄKI S, LI M, SALOMAA J, et al. Performance of printable supercapacitors in an RF energy harvesting circuit[J]. International Journal of Electrical Power & Energy Systems, 2014, 58:42-46. http://linkinghub.elsevier.com/retrieve/pii/S0142061514000052
|
[5] |
PARK H, SUN J, PEKAREK S, et al. Real-time model predictive control for shipboard power management using the IPA-SQP approach[J]. IEEE Transactions on Control Systems Technology, 2015, 23(6):2129-2143. doi: 10.1109/TCST.2015.2402233
|
[6] |
米阳, 王成山.基于负荷估计的光柴独立微网频率优化控制[J].中国电机工程学报, 2013, 33(34):115-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201334015
MI Y, WANG C S. Frequency optimization control for isolated photovoltaic-diesel hybrid microgrid based on load estimation[J]. Proceedings of the CSEE, 2013, 33(34):115-121(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201334015
|
[7] |
MI Y, FU Y, LI D D, et al. The sliding mode load frequency control for hybrid power system based on disturbance observer[J]. International Journal of Electrical Power & Energy Systems, 2016, 74:446-452. http://linkinghub.elsevier.com/retrieve/pii/S0142061515003002
|
[8] |
LIU X J, KONG X B, LEE K Y. Distributed model predictive control for load frequency control with dynamic fuzzy valve position modelling for hydro-thermal power system[J]. IET Control Theory & Applications, 2016, 10(14):1653-1664. doi: 10.1049/iet-cta.2015.1021
|
[9] |
ERSDAL A M, IMSLAND L, UHLEN K. Model predictive load-frequency control[J]. IEEE Transactions on Power Systems, 2016, 31(1):777-785. doi: 10.1109/TPWRS.2015.2412614
|
[10] |
ELSISI M, SOLIMAN M, ABOELELA M A S, et al. Bat inspired algorithm based optimal design of model predictive load frequency control[J]. International Journal of Electrical Power & Energy Systems, 2016, 83:426-433. http://linkinghub.elsevier.com/retrieve/pii/S014206151630713X
|
[11] |
SUN Y H, LI N, ZHAO X M, et al. Robust H∞ load frequency control of delayed multi-area power system with stochastic disturbances[J]. Neurocomputing, 2016, 193:58-67. doi: 10.1016/j.neucom.2016.01.066
|
[12] |
SARGOLZAEI A, YEN K K, ABDELGHANI M N. Preventing time-delay switch attack on load frequency control in distributed power systems[J]. IEEE Transactions on Smart Grid, 2016, 7(2):1176-1185. http://dblp.uni-trier.de/db/journals/tsg/tsg7.html#SargolzaeiYA16
|
[13] |
BEVRANI H, FEIZI M R, ATAEE S. Robust frequency control in an islanded microgrid:H∞ and μ-synthesis approaches[J]. IEEE Transactions on Smart Grid, 2016, 7(2):706-717. http://ieeexplore.ieee.org/document/7159089/
|
[14] |
CHUANG N. Robust H∞ load frequency control in interconnected power systems[J]. IET Control Theory & Applications, 2016, 10(1):67-75. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7362314
|
[15] |
ZHANG S Q, MISHRA Y, SHAHIDEHPOUR M. Fuzzy-logic based frequency controller for wind farms augmented with energy storage systems[J]. IEEE Transactions on Power Systems, 2016, 31(2):1595-1603. doi: 10.1109/TPWRS.2015.2432113
|
[16] |
MAHTO T, MUKHERJEE V. A novel scaling factor based fuzzy logic controller for frequency control of an isolated hybrid power system[J]. Energy, 2017, 130:339-350. doi: 10.1016/j.energy.2017.04.155
|
[17] |
SASAKI T, KADOYA T, ENOMOTO K. Study on load frequency control using redox flow batteries[J]. IEEE Transactions on Power Systems, 2004, 19(1):660-667. doi: 10.1109/TPWRS.2003.818724
|
[18] |
郭海刚, 李洪兴, 胡凯.一类变论域自适应模糊控制器[J].模糊系统与数学, 2011, 25(6):32-42. http://www.doc88.com/p-0911981067322.html
GUO H G, LI H X, HU K. A novel variable universe adaptive fuzzy controller[J]. Fuzzy Systems and Mathematics, 2011, 25(6):32-42(in Chinese). http://www.doc88.com/p-0911981067322.html
|
[19] |
王志新.智能模糊控制的若干问题研究[M].北京:知识产权出版社, 2009:139-145.
|
[20] |
李洪兴, 汪群, 段钦治, 等.工程模糊数学方法及应用[M].天津:天津科学技术出版社, 1993.
|
[21] |
BØ T I, JOHANSEN T A. Battery power smoothing control in a marine electric power plant using nonlinear model predictive control[J]. IEEE Transactions on Control Systems Technology, 2016, 25(4):1449-1456. http://dblp.uni-trier.de/db/journals/tcst/tcst25.html#BoJ17
|
[22] |
卢贤基. 船舶发电柴油机调速系统的研究与设计[D]. 大连: 大连海事大学, 2013.
|
[23] |
刘珊珊. 基于模糊控制的船舶电站自动调频调载装置的研究与设计[D]. 大连: 大连海事大学, 2007.
|