SU Li, WANG Xihuai, XIAO Jianmei. Ship micro-grid reconfiguration based on multiobjective optimization algorithm[J]. Chinese Journal of Ship Research, 2020, 15(3): 169-176. DOI: 10.19693/j.issn.1673-3185.01534
Citation: SU Li, WANG Xihuai, XIAO Jianmei. Ship micro-grid reconfiguration based on multiobjective optimization algorithm[J]. Chinese Journal of Ship Research, 2020, 15(3): 169-176. DOI: 10.19693/j.issn.1673-3185.01534

Ship micro-grid reconfiguration based on multiobjective optimization algorithm

More Information
  • Received Date: February 26, 2019
  • Available Online: May 07, 2021
© 2020 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives   In order to solve the problem of poor convergence and distribution of the existing constrained multiobjective optimization algorithms in solving the ship micro-grid reconfiguration, a constrained multiobjective optimization method based on two-stage differential evolution (TSDE) algorithm is proposed.
      Methods   Firstly, in the first stage, the two-population hybrid method(i.e. self-adaptive penalty function method and feasibility rule)was used to deal with the constraints. Secondly, in the second stage, the two populations generated in the first stage were merged into a single population, and the feasibility rule was adopted to solve the constrained optimization problem. Finally, different elitist selection strategies and improved non-parametric mutation operators were adopted in different stages to further optimize the differential evolution algorithm.
      Results   The simulation results show that the minimum load loss obtained by TSDE algorithm under the fault 1 and the fault 2 is 185 and 940 A lower than that of chaotic migration and parameterless mutation differential evolution (CMPMDE) and environment pareto dominated selection differential evolution(EPDSDE), respectively. The minimum switching operands obtained by the TSDE algorithm are 1 time more than that of CMPMDE algorithm under the fault 1, and are the same as that of EPDSDE algorithm. Under the fault 2, the minimum switching operands of the proposed algorithm are 1 time less than those of CMPMDE algorithm and EPDSDE algorithm.
      Conclusions   The set of optimal non-inferior solutions obtained by TSDE algorithm is closer to the real Pareto frontier and distributes more evenly, so the method can ensure that the ship is operated safely and steadily when the reconfiguration time is satisfied.
  • [1]
    王锡淮, 李军军, 肖健梅.求解舰船电力系统网络重构的贪婪DPSO算法[J].控制与决策, 2008, 23(2):157-161. http://d.old.wanfangdata.com.cn/Periodical/kzyjc200802007

    WANG X H, LI J J, XIAO J M. Greed DPSO algorithm for network reconfiguration of shipboard power system[J]. Control and Decision, 2008, 23(2):157-161. http://d.old.wanfangdata.com.cn/Periodical/kzyjc200802007
    [2]
    李军军, 徐波桅, 甘世红, 等.基于贪婪度表的DPSO求解舰船电力系统网络重构[J].电工技术学报, 2011, 26(5):146-151. http://d.old.wanfangdata.com.cn/Periodical/dgjsxb201105023

    LI J J, XU B W, GAN S H, et al. Discrete particle swarm optimization algorithm based on greed table for network reconfiguration of the shipboard power system[J]. Transactions of China Electrotechnical Society, 2011, 26(5):146-151. http://d.old.wanfangdata.com.cn/Periodical/dgjsxb201105023
    [3]
    陈洋.基于高斯动态PSO算法的舰船电网故障重构方法研究[D].大连: 大连海事大学, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2998853

    CHEN Y. Shipboard power system fault reconstruction method research based on gaussian dynamic particle swarm optimization algorithm[D]. Dalian: Dalian Maritime University, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2998853
    [4]
    楚玉华.基于改进粒子群算法的船舶电力系统网络重构[D].镇江: 江苏科技大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D01036034

    CHU Y H. Network reconfiguration of shipboard power system based on improved particle swarm optimization algorithm[D]. Zhenjiang: Jiangsu University of Science and Technology, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D01036034
    [5]
    楚玉华, 黄巧亮.基于双粒子群算法的船舶电力系统网络重构[J].电子设计工程, 2017, 25(5):37-41. http://d.old.wanfangdata.com.cn/Periodical/dzsjgc201705010

    CHU Y H, HUANG Q L. Reconfiguration of shipboard power system based on double sub-swarms particle swarm optimization[J]. Electronic Design Engineering, 2017, 25(5):37-41. http://d.old.wanfangdata.com.cn/Periodical/dzsjgc201705010
    [6]
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. doi: 10.1109/4235.996017
    [7]
    杨秀霞, 张晓锋, 张毅, 等.基于启发式遗传算法的舰船电力系统网络重构研究[J].中国电机工程学报, 2003, 23(10):42-46. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb200310009

    YANG X X, ZHANG X F, ZHANG Y, et al. The study of network reconfiguration of the shipboard power system based on heuristic genetic algrithm[J]. Proceedings of the CSEE, 2003, 23(10):42-46. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb200310009
    [8]
    杨秀霞, 张晓锋, 张毅.免疫遗传算法在舰船电力系统供电恢复中的应用研究[J].中国电机工程学报, 2004, 24(9):80-85. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb200409014

    YANG X X, ZHANG X F, ZHANG Y. Study on immune genetic algorithm for shipboard power system service restoration[J]. Proceedings of the CSEE, 2004, 24(9):80-85. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb200409014
    [9]
    张涛.基于NSGA-II的舰船电网故障重构[D].大连: 大连海事大学, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2903208

    ZHANG T. Fault restoration of shipboard power system based on NSGA-II algorithm[D]. Dalian: Dalian Maritime University, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2903208
    [10]
    朱志宇, 刘维亭, 庄肖波.基于克隆算法的舰船电力系统故障恢复[J].电工技术学报, 2009, 24(1):164-170. http://d.old.wanfangdata.com.cn/Periodical/dgjsxb200901028

    ZHU Z Y, LIU W T, ZHUANG X B. Shipboard power system service restoration based on clonal algorithm[J]. Transactions of China Electrotechnical Society, 2009, 24(1):164-170. http://d.old.wanfangdata.com.cn/Periodical/dgjsxb200901028
    [11]
    王丛佼, 王锡淮, 肖健梅.改进差分进化算法在舰船电力系统网络重构中的应用[J].船舶工程, 2013, 35(6):55-59, 67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cbgc201306014

    WANG C J, WANG X H, XIAO J M. Improvement of application of differential evolution algorithm in network reconfiguration of shipboard power system[J]. Ship Engineering, 2013, 35(6):55-59, 67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cbgc201306014
    [12]
    朱志宇, 郑晨阳.基于混沌自适应差分进化算法的舰船电力系统网络重构[J].江苏科技大学学报(自然科学版), 2013, 27(2):154-158. http://d.old.wanfangdata.com.cn/Periodical/hdcbgyxy201302010

    ZHU Z Y, ZHENG C Y. Network reconfiguration of shipboard power system based on chaos adaptive differential evolution algorithm[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2013, 27(2):154-158. http://d.old.wanfangdata.com.cn/Periodical/hdcbgyxy201302010
    [13]
    毕晓君, 刘国安.基于云差分进化算法的约束多目标优化实现[J].哈尔滨工程大学学报, 2012, 33(8):1022-1031. http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201208014

    BI X J, LIU G A. A cloud differential evolutionary algorithm for constrained multi-objective optimization[J]. Journal of Harbin Engineering University, 2012, 33(8):1022-1031. http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201208014
    [14]
    马理胜, 张均东, 任光, 等.基于混沌迁移及无参数变异差分进化算法的舰船电力系统网络重构[J].上海海事大学学报, 2015, 36(3):76-81. http://d.old.wanfangdata.com.cn/Periodical/shhyxyxb201503013

    MA L S, ZHANG J D, REN G, et al. Network reconfiguration of ship power system based on chaotic migration and parameterless mutation differential evolution algorithm[J]. Journal of Shanghai Maritime University, 2015, 36(3):76-81. http://d.old.wanfangdata.com.cn/Periodical/shhyxyxb201503013
    [15]
    马理胜, 张均东, 任光.基于环境Pareto支配选择差分进化算法的舰船电网重构[J].大连海事大学学报, 2018, 44(2):33-38. http://d.old.wanfangdata.com.cn/Periodical/dlhsdxxb201802006

    MA L S, ZHANG J D, REN G. Shipboard power grid reconstruction based on environment Pareto dominated selection differential evolution algorithm[J]. Journal of Dalian Maritime University, 2018, 44(2):33-38. http://d.old.wanfangdata.com.cn/Periodical/dlhsdxxb201802006
    [16]
    孙浩, 杨景明, 刘醒, 等.基于环境Pareto支配选择策略的有约束多目标差分进化算法[J].控制与决策, 2016, 31(1):45-51. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201601006

    SUN H, YANG J M, LIU X, et al. Differential evolution algorithm based on environment Pareto dominated selection strategy in constrained multi-objective optimization problem[J]. Control and Decision, 2016, 31(1):45-51. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201601006
  • Other Related Supplements

  • Cited by

    Periodical cited type(6)

    1. 杨亚宇,邰能灵,黄文焘,余墨多,刘宇. 船舶中压直流综合电力系统(二):故障保护管理技术. 电工技术学报. 2024(23): 7341-7364 .
    2. 马理胜,宋庆庆. 大扰动状态下基于多目标差分进化算法的舰船电网重构研究. 舰船科学技术. 2023(04): 117-120 .
    3. 张馨悦,肖健梅,王锡淮. 基于改进灰狼优化算法的舰船电力系统故障重构. 中国舰船研究. 2023(02): 251-259 . 本站查看
    4. 王腾洲,李森文,黄宇轩,郝思鹏. 基于IWOA-SVM的风电功率预测. 机械与电子. 2022(05): 9-12 .
    5. 邵飞帆,段倩倩. 基于改进粒子群算法的舰船电力系统网络重构. 制造业自动化. 2022(10): 100-103 .
    6. 梁正卓,朱琬璐,朱志宇,智鹏飞,楚浩清. 船舶综合电力系统重构技术现状及展望. 中国舰船研究. 2022(06): 36-47 . 本站查看

    Other cited types(9)

Catalog

    Article views (430) PDF downloads (119) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return