FU W C, LIU Z Q, KONG X S, et al. Study of similarity characteristic for the buckling process of box girders subjected to bending load[J]. Chinese Journal of Ship Research, 2023, 18(3): 173–185. DOI: 10.19693/j.issn.1673-3185.02551
Citation: FU W C, LIU Z Q, KONG X S, et al. Study of similarity characteristic for the buckling process of box girders subjected to bending load[J]. Chinese Journal of Ship Research, 2023, 18(3): 173–185. DOI: 10.19693/j.issn.1673-3185.02551

Study of similarity characteristic for the buckling process of box girders subjected to bending load

More Information
  • Received Date: October 07, 2021
  • Revised Date: March 11, 2022
  • Available Online: March 13, 2022
© 2023 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  This study aims to explore nonlinear similarity criteria for box girders under pure bending load, improve the prediction accuracy of the model on the response of prototype structures and provide a theoretical basis for establishing a distortional similarity model design method for actual ship structures.
      Methods  First, based on the stability and nonlinear criteria of axially compressed reinforced slabs, a nonlinear similarity criterion for box girders under pure bending load is established using the theoretical analysis method. Second, the ultimate load-carrying capacity and buckling response of scaled-down prototype box girder models are then analyzed using the numerical calculation method to verify the validity of the similarity criterion.
      Results  The numerical calculation results show that different scale designs based on the proposed method have high similarities in their flexural failure modes, and the ultimate strength of the scaled-down prototype models can be accurately predicted. Under a specific flexural mode, an increase in the initial deformation reduces the ultimate load-carrying capacity of the box girder. In contrast, the initial deformation factor has less influence on the prediction accuracy of the scaled-down model.
      Conclusions  This paper provides an effective nonlinear similarity model design method for the ultimate strength testing of hull beams under pure bending load, which has value for the study of the structural safety of ships.
  • [1]
    SUGIMURA T, NOZAKI M, SUZUKI T. Destructive experiment of ship hull model under longitudinal bending[J]. Journal of Zosen Kiokai, 1966, 1966(119): 209–220. doi: 10.2534/jjasnaoe1952.1966.209
    [2]
    DOWLING P J, MOOLANI F M, FRIEZE P A. The effect of shear lag on the ultimate strength of box girders[C]//International Congress on Steel Plated Structures. 1976: 108–147.
    [3]
    RECKLING K A. Behaviour of box girders under bending and shear[C]//Proceedings of the 7th International Ship and Offshore Structures Congress (ISSC). Paris: ISSC, 1979.
    [4]
    DOW R S. Testing and analysis of a 1/3-scale welded steel frigate model[C]//Proceedings of the International Conference on Advances in Marine Structures. Dunfermline: ARE, 1991.
    [5]
    YAO T, FUJIKUBO M, YANAGIHARA D, et al. Buckling collapse strength of chip carrier under longitudinal bending (1st Report)[J]. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2002, 2002(191): 255–264. doi: 10.2534/jjasnaoe1968.2002.255
    [6]
    OSTAPENKO A. Strength of ship hull girders under moment, shear and torque[C]//Proceedings of the SSC-SNAME Symposium on Extreme Loads Response. Arlington: [s. n. ], 1980.
    [7]
    ENDO H I, TANAKA Y, AOKI G, et al. Longitudinal strength of the fore body of ships suffering from slamming[J]. Journal of the Society of Naval Architects of Japan, 1988, 1988(163): 322–333. doi: 10.2534/jjasnaoe1968.1988.322
    [8]
    徐向东, 崔维成, 冷建兴, 等. 箱型梁极限承载能力试验与理论研究[J]. 船舶力学, 2000, 4(5): 36–43.

    XU X D, GUI W C, LENG J X, et al. An experimental and theoretical study on ultimate strength of a box girder[J]. Journal of Ship Mechanics, 2000, 4(5): 36–43 (in Chinese).
    [9]
    杨平. 船体结构极限强度及破损剩余强度的研究[D]. 武汉: 武汉理工大学, 2005.

    YANG P. Research on ultimate strength of ship hulls and residual strength of damaged ships[D]. Wuhan: Wuhan University of Technology, 2005 (in Chinese).
    [10]
    刘斌. 小水线面双体船极限强度研究[D]. 武汉: 武汉理工大学, 2009.

    LIU B. Ultimate strength study of SWATH ships[D]. Wuhan: Wuhan University of Technology, 2009 (in Chinese).
    [11]
    刘维勤. 高速三体船极限强度研究[D]. 武汉: 武汉理工大学, 2011.

    LIU W Q. Ultimate strength study of high speed trimaran[D]. Wuhan: Wuhan University of Technology, 2011 (in Chinese).
    [12]
    师桂杰. 集装箱船船体结构极限强度研究[D]. 上海: 上海交通大学, 2012.

    SHI G J. Ultimate strength analysis of container ship hull structures[D]. Shanghai: Shanghai Jiao Tong University, 2012 (in Chinese).
    [13]
    张皓. 船体结构极限强度试验技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.

    ZHANG H. The research of the ultimate strength test technology of ship structures[D]. Harbin: Harbin Engineering University, 2015 (in Chinese).
    [14]
    卢润泽. 舰船总纵弯曲极限承载能力分析[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    LU R Z. Analysis on the ultimate strength capacity of the longitudinal bending of the vessel[D]. Harbin: Harbin Engineering University, 2012 (in Chinese).
    [15]
    周凡. 船体极限强度试验相似模型设计研究[D]. 武汉: 武汉理工大学, 2014.

    ZHOU F. Research on the design method of hull scaled model in ultimate strength test[D]. Wuhan: Wuhan University of Technology, 2014 (in Chinese).
    [16]
    朱志辉. 极限强度模型试验非线性相似准则研究[D]. 武汉: 武汉理工大学, 2017.

    ZHU Z H. Research on nonlinear similarity criterion for model test of ultimate strength[D]. Wuhan: Wuhan University of Technology, 2017 (in Chinese).
    [17]
    CHEN Y K. Ultimate strength of ship structures[J]. Trans SNAME, 1983, 91.
    [18]
    陈海龙, 许维军, 万乐天. 加筋板结构后极限强度行为影响参数研究[J]. 哈尔滨工业大学学报, 2015, 47(5): 118–122.

    CHEN H L, XU W J, WAN L T. Investigation into the influential parameters on post-ultimate strength behaviour of stiffened panels[J]. Journal of Harbin Institute of Technology, 2015, 47(5): 118–122 (in Chinese).
    [19]
    PAIK J K, KIM B J. Ultimate strength formulations for stiffened panels under combined axial load, in-plane bending and lateral pressure: a benchmark study[J]. Thin-Walled Structures, 2002, 40(1): 45–83. doi: 10.1016/S0263-8231(01)00043-X
    [20]
    陆亚兵, 王德禹. 双向受压裂纹板剩余极限强度分析[J]. 中国舰船研究, 2017, 12(5): 75–83. doi: 10.3969/j.issn.1673-3185.2017.05.009

    LU Y B, WANG D Y. Assessment of residual ultimate strength of cracked plates under biaxial compression[J]. Chinese Journal of Ship Research, 2017, 12(5): 75–83 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.05.009
    [21]
    HU K, YANG P, XIA T, et al. Residual ultimate strength of large opening box girder with crack damage under torsion and bending loads[J]. Ocean Engineering, 2018, 162: 274–289. doi: 10.1016/j.oceaneng.2018.05.024
    [22]
    LI D Y, FENG L, HUANG D Y, et al. Residual ultimate strength of stiffened box girder with coupled damage of pitting corrosion and a crack under vertical bending moment[J]. Ocean Engineering, 2021, 235: 109341. doi: 10.1016/j.oceaneng.2021.109341
    [23]
    王保森, 冯亮, 耿保阳. 基于有限元法的箱型梁极限强度影响因素及敏感分析[J]. 舰船科学技术, 2019, 41(8): 28–33, 54.

    WANG B S, FENG L, GENG B Y. Ultimate strength and sensitive analysis of box girder based on finite element method[J]. Ship Science and Technology, 2019, 41(8): 28–33, 54 (in Chinese).
  • Other Related Supplements

Catalog

    Article views (1265) PDF downloads (35) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return