Citation: | DENG H Y, GUAN D Z, LI S M, et al. Influence of Magnus cylinder and variable angle flap on the aerodynamic performance of unmanned sailboat[J]. Chinese Journal of Ship Research, 2023, 18(1): 170–180. DOI: 10.19693/j.issn.1673-3185.02693 |
[1] |
王永生. 关爱海洋关注海洋资源开发[J]. 西部资源, 2010(4): 8.
WANG Y S. Caring for the ocean and concerned about the development of marine resources[J]. Western Resources, 2010(4): 8 (in Chinese).
|
[2] |
孙松, 孙晓霞. 对我国海洋科学研究战略的认识与思考[J]. 中国科学院院刊, 2016, 31(12): 1285–1292. doi: 10.16418/j.issn.1000-3045.2016.12.001
SUN S, SUN X X. Future ocean and our research strategy[J]. Bulletin of the Chinese Academy of Sciences, 2016, 31(12): 1285–1292 (in Chinese). doi: 10.16418/j.issn.1000-3045.2016.12.001
|
[3] |
马靖丰. 无人帆船研究进展[J]. 中国科技纵横, 2019(12): 85–86, 88.
MA J F. Advances in research on unmanned sailboats[J]. China Science & Technology Overview, 2019(12): 85–86, 88 (in Chinese).
|
[4] |
廖珂, 邓德衡, 许劲松. 基于约束模型试验的无人帆船速度预报[J]. 船舶工程, 2020, 42(7): 138–143. doi: 10.13788/j.cnki.cbgc.2020.07.23
LIAO K, DENG D H, XU J S. Velocity prediction of unmanned sailboat based on the captive model test[J]. Ship Engineering, 2020, 42(7): 138–143 (in Chinese). doi: 10.13788/j.cnki.cbgc.2020.07.23
|
[5] |
常继强, 蒲进菁, 庄振业, 等. 无人船在海洋调查领域的应用分析[J]. 船舶工程, 2019, 41(1): 6–10, 78. doi: 10.13788/j.cnki.cbgc.2019.01.02
CHANG J Q, PU J J, ZHUANG Z Y, et al. Application analysis of unmanned vehicle in the field of marine survey[J]. Ship Engineering, 2019, 41(1): 6–10, 78 (in Chinese). doi: 10.13788/j.cnki.cbgc.2019.01.02
|
[6] |
SEIFERT J. A review of the Magnus effect in aeronautics[J]. Progress in Aerospace Sciences, 2012, 55: 17–45. doi: 10.1016/j.paerosci.2012.07.001
|
[7] |
BORGLUND D, KUTTENKEULER J. Active wing flutter suppression using a trailing edge flap[J]. Journal of Fluids and Structures, 2002, 16(3): 271–294. doi: 10.1006/jfls.2001.0426
|
[8] |
俞建成, 孙朝阳, 张艾群. 无人帆船研究现状与展望[J]. 机械工程学报, 2018, 54(24): 98–110. doi: 10.3901/JME.2018.24.098
YU J C, SUN Z Y, ZHANG A Q. Research status and prospect of autonomous sailboats[J]. Journal of Mechanical Engineering, 2018, 54(24): 98–110 (in Chinese). doi: 10.3901/JME.2018.24.098
|
[9] |
唐新姿, 陆鑫宇, 王效禹, 等. 低雷诺数条件下马格努斯翼型气动性能数值分析与优化研究[J]. 太阳能学报, 2021, 42(6): 265–271. doi: 10.19912/j.0254-0096.tynxb.2019-0157
TANG X Z, LU X Y, WANG X Y, et al. Numerical analysis and optimization of aerodynamic performance of Magnus airfoil at low Reynold number[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 265–271 (in Chinese). doi: 10.19912/j.0254-0096.tynxb.2019-0157
|
[10] |
郝文星, 李春. 分离式尾缘襟翼翼缝影响机理及其改型研究[J]. 动力工程学报, 2020, 40(10): 838–844. doi: 10.19805/j.cnki.jcspe.2020.10.010
HAO W X, LI C. Influence mechanism of discrete trailing-edge flap gap on aerodynamic performance of the airfoil and its modification[J]. Journal of Chinese Society of Power Engineering, 2020, 40(10): 838–844 (in Chinese). doi: 10.19805/j.cnki.jcspe.2020.10.010
|
[11] |
TENNANT J S, JOHNSON W S, KEATON D D. Boundary-layer flows from fixed to moving surfaces including gap effects[J]. Journal of Hydronautics, 1978, 12(2): 81–84. doi: 10.2514/3.48161
|
[12] |
SEDAGHAT A, SAMANI I, AHMADI-BALOUTAKI M, et al. Computational study on novel circulating aerofoils for use in Magnus wind turbine blades[J]. Energy, 2015, 91: 393–403. doi: 10.1016/j.energy.2015.08.058
|
[13] |
单继祥, 张旭, 陈强洪. 后缘旋转圆柱对低速翼型气动特性影响研究[J]. 计算机仿真, 2017, 34(12): 18–21, 54. doi: 10.3969/j.issn.1006-9348.2017.12.005
SHAN J X, ZHANG X, CHEN Q H. Numerical simulation on effects of rotating cylinder in trailing edge on airfoil aerodynamics characteristic[J]. Computer Simulation, 2017, 34(12): 18–21, 54 (in Chinese). doi: 10.3969/j.issn.1006-9348.2017.12.005
|
[14] |
王泽, 陈冠华, 徐欣, 等. 马格努斯圆柱对固定翼增升机理的数值研究[J]. 飞行力学, 2021, 39(6): 15–21. doi: 10.13645/j.cnki.f.d.20210914.004
WANG Z, CHEN G H, XU X, et al. Numerical investigation of high-lift fixed wing with Magnus cylinders[J]. Flight Dynamics, 2021, 39(6): 15–21 (in Chinese). doi: 10.13645/j.cnki.f.d.20210914.004
|
[15] |
JOHNSON S J, BAKER J P, VAN DAM C P, et al. An overview of active load control techniques for wind turbines with an emphasis on microtabs[J]. Wind Energy, 2010, 13(2/3): 239–253. doi: 10.1002/we.356
|
[16] |
WATANABE S, KATO H, YAMAMOTO K. Velocity field measurements of a wing-flap configuration via stereoscopic PIV[C]//Proceedings of the 44th AIAA Aero-space Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2006.
|
[17] |
LARATRO A, ARJOMANDI M, CAZZOLATO B, et al. Self-noise of NACA 0012 and NACA 0021 aerofoils at the onset of stall[J]. International Journal of Aeroacoustics, 2017, 16(3): 181–195. doi: 10.1177/1475472X17709929
|
[18] |
李臣, 孙培廷. 低雷诺数下双元素翼帆的襟翼几何参数对其推进特性影响研究[J]. 推进技术, 2020, 41(11): 2613–2622. doi: 10.13675/j.cnki.tjjs.200110
LI C, SUN P T. Effects of flap geometry parameters on propulsion characteristics of two-elements wingsail at low Reynolds number[J]. Journal of Propulsion Technology, 2020, 41(11): 2613–2622 (in Chinese). doi: 10.13675/j.cnki.tjjs.200110
|
[19] |
陆龙骅. 我国实际大气与国际标准大气[J]. 气象, 1980(7): 1–2. doi: 10.7519/j.issn.1000-0526.1980.07.001
LU L H. The actual atmosphere of China and the international standard atmosphere[J]. Meteorological Monthly, 1980(7): 1–2 (in Chinese). doi: 10.7519/j.issn.1000-0526.1980.07.001
|
[20] |
高歌, 闫文辉, 吴俊宏, 等. 计算流体力学——典型算法与算例[M]. 北京: 机械工业出版社, 2015: 1–14.
GAO G, YAN W H, WU J H, et al. Computational fluid dynamics – typical algorithms and examples[M]. Beijing: China Machine Press, 2015: 1–14 (in Chinese).
|
[21] |
孙烨, 司先才, 马靖丰, 等. 小型无人帆船Z形操纵性能预测分析[J]. 中国舰船研究, 2019, 14(2): 15–20. doi: 10.19693/j.issn.1673-3185.01380
SUN Y, SI X C, MA J F, et al. Predictive analysis on zigzag maneuverability of small saildrone[J]. Chinese Jour-nal of Ship Research, 2019, 14(2): 15–20 (in Chinese). doi: 10.19693/j.issn.1673-3185.01380
|
[22] |
李亮, 刘登成, 洪方文, 等. 风浪作用下船体纵摇运动对螺旋桨激振力特性影响分析[J]. 中国造船, 2020, 61(2): 1–13. doi: 10.3969/j.issn.1000-4882.2020.02.001
LI L, LIU D C, HONG F W, et al. Influence of hull pitch motion in wind and waves on exciting force of propeller[J]. Shipbuilding of China, 2020, 61(2): 1–13 (in Chinese). doi: 10.3969/j.issn.1000-4882.2020.02.001
|
[23] |
周宇, 钱炜祺, 邓有奇, 等. k-ω SST两方程湍流模型中参数影响的初步分析[J]. 空气动力学学报, 2010, 28(2): 213–217. doi: 10.3969/j.issn.0258-1825.2010.02.015
ZHOU Y, QIAN W Q, DENG Y Q, et al. Introductory analysis of the influence of Menter's k-ω SST turbulence model's parameters[J]. Acta Aerodynamica Sinica, 2010, 28(2): 213–217 (in Chinese). doi: 10.3969/j.issn.0258-1825.2010.02.015
|
[24] |
袁武. k-ω两方程湍流模型研究[D]. 北京: 北京航空航天大学, 2006
YUAN W. Research on k-ω two-equation turbulence model [D]. Beijing: Beihang University, 2006 (in Chinese)
|
[25] |
HOLST D, BALDUZZI F, BIANCHINI A, et al. Static and dynamic analysis of a NACA 0021 airfoil section at low Reynolds numbers based on experiments and computational fluid dynamics[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(5): 051015.
|