DENG H Y, GUAN D Z, LI S M, et al. Influence of Magnus cylinder and variable angle flap on the aerodynamic performance of unmanned sailboat[J]. Chinese Journal of Ship Research, 2023, 18(1): 170–180. DOI: 10.19693/j.issn.1673-3185.02693
Citation: DENG H Y, GUAN D Z, LI S M, et al. Influence of Magnus cylinder and variable angle flap on the aerodynamic performance of unmanned sailboat[J]. Chinese Journal of Ship Research, 2023, 18(1): 170–180. DOI: 10.19693/j.issn.1673-3185.02693

Influence of Magnus cylinder and variable angle flap on the aerodynamic performance of unmanned sailboat

More Information
  • Received Date: December 06, 2021
  • Revised Date: March 13, 2022
  • Available Online: March 21, 2022
© 2023 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objective  This paper aims to study and optimize the influence of Magnus airfoil and variable angle flaps on the aerodynamic performance of unmanned sailboats in order to improve the sailing efficiency.
      Methods  NACA 0021 is used as the basic airfoil for the mainsail, and the Magnus cylinder is coupled with the tip edge of the mainsail to analyze the influence of key parameters (i.e., diameter, position and gap) on the lift-drag characteristics of the airfoil. On this basis, a flap sail is embedded at the trailing edge of the mainsail to study the flow field conditions and lift-drag characteristics of the airfoil under different flap deflection angles, and its influence on the thrust performance of the unmanned sailboat.
      Results  The results show that under a large angle of attack, the Magnus cylinder has an improving effect on the aerodynamic performance of the airfoil; its lift-to-drag ratio is positively correlated with position and negatively correlated with diameter and gap within the studied range; diameter and gap have a greater effect on the aerodynamic performance of the airfoil than the position; the variable angle flap has a more obvious improving effect on the aerodynamic performance of the airfoil under a small angle of attack, and the lift-to-drag ratio is positively correlated with the flap deflection angle in a 0°–15° angle of attack; and within the studied range, the joint action of the Magnus cylinder and flap has a maximum improvement of 27% on the thrust coefficient of the sail, and the thrust coefficient is positively correlated with the flap deflection angle.
      Conclusion  The results of this study can provide references for the application of Magnus cylinders and embedded flap in the field of unmanned sailing.
  • [1]
    王永生. 关爱海洋关注海洋资源开发[J]. 西部资源, 2010(4): 8.

    WANG Y S. Caring for the ocean and concerned about the development of marine resources[J]. Western Resources, 2010(4): 8 (in Chinese).
    [2]
    孙松, 孙晓霞. 对我国海洋科学研究战略的认识与思考[J]. 中国科学院院刊, 2016, 31(12): 1285–1292. doi: 10.16418/j.issn.1000-3045.2016.12.001

    SUN S, SUN X X. Future ocean and our research strategy[J]. Bulletin of the Chinese Academy of Sciences, 2016, 31(12): 1285–1292 (in Chinese). doi: 10.16418/j.issn.1000-3045.2016.12.001
    [3]
    马靖丰. 无人帆船研究进展[J]. 中国科技纵横, 2019(12): 85–86, 88.

    MA J F. Advances in research on unmanned sailboats[J]. China Science & Technology Overview, 2019(12): 85–86, 88 (in Chinese).
    [4]
    廖珂, 邓德衡, 许劲松. 基于约束模型试验的无人帆船速度预报[J]. 船舶工程, 2020, 42(7): 138–143. doi: 10.13788/j.cnki.cbgc.2020.07.23

    LIAO K, DENG D H, XU J S. Velocity prediction of unmanned sailboat based on the captive model test[J]. Ship Engineering, 2020, 42(7): 138–143 (in Chinese). doi: 10.13788/j.cnki.cbgc.2020.07.23
    [5]
    常继强, 蒲进菁, 庄振业, 等. 无人船在海洋调查领域的应用分析[J]. 船舶工程, 2019, 41(1): 6–10, 78. doi: 10.13788/j.cnki.cbgc.2019.01.02

    CHANG J Q, PU J J, ZHUANG Z Y, et al. Application analysis of unmanned vehicle in the field of marine survey[J]. Ship Engineering, 2019, 41(1): 6–10, 78 (in Chinese). doi: 10.13788/j.cnki.cbgc.2019.01.02
    [6]
    SEIFERT J. A review of the Magnus effect in aeronautics[J]. Progress in Aerospace Sciences, 2012, 55: 17–45. doi: 10.1016/j.paerosci.2012.07.001
    [7]
    BORGLUND D, KUTTENKEULER J. Active wing flutter suppression using a trailing edge flap[J]. Journal of Fluids and Structures, 2002, 16(3): 271–294. doi: 10.1006/jfls.2001.0426
    [8]
    俞建成, 孙朝阳, 张艾群. 无人帆船研究现状与展望[J]. 机械工程学报, 2018, 54(24): 98–110. doi: 10.3901/JME.2018.24.098

    YU J C, SUN Z Y, ZHANG A Q. Research status and prospect of autonomous sailboats[J]. Journal of Mechanical Engineering, 2018, 54(24): 98–110 (in Chinese). doi: 10.3901/JME.2018.24.098
    [9]
    唐新姿, 陆鑫宇, 王效禹, 等. 低雷诺数条件下马格努斯翼型气动性能数值分析与优化研究[J]. 太阳能学报, 2021, 42(6): 265–271. doi: 10.19912/j.0254-0096.tynxb.2019-0157

    TANG X Z, LU X Y, WANG X Y, et al. Numerical analysis and optimization of aerodynamic performance of Magnus airfoil at low Reynold number[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 265–271 (in Chinese). doi: 10.19912/j.0254-0096.tynxb.2019-0157
    [10]
    郝文星, 李春. 分离式尾缘襟翼翼缝影响机理及其改型研究[J]. 动力工程学报, 2020, 40(10): 838–844. doi: 10.19805/j.cnki.jcspe.2020.10.010

    HAO W X, LI C. Influence mechanism of discrete trailing-edge flap gap on aerodynamic performance of the airfoil and its modification[J]. Journal of Chinese Society of Power Engineering, 2020, 40(10): 838–844 (in Chinese). doi: 10.19805/j.cnki.jcspe.2020.10.010
    [11]
    TENNANT J S, JOHNSON W S, KEATON D D. Boundary-layer flows from fixed to moving surfaces including gap effects[J]. Journal of Hydronautics, 1978, 12(2): 81–84. doi: 10.2514/3.48161
    [12]
    SEDAGHAT A, SAMANI I, AHMADI-BALOUTAKI M, et al. Computational study on novel circulating aerofoils for use in Magnus wind turbine blades[J]. Energy, 2015, 91: 393–403. doi: 10.1016/j.energy.2015.08.058
    [13]
    单继祥, 张旭, 陈强洪. 后缘旋转圆柱对低速翼型气动特性影响研究[J]. 计算机仿真, 2017, 34(12): 18–21, 54. doi: 10.3969/j.issn.1006-9348.2017.12.005

    SHAN J X, ZHANG X, CHEN Q H. Numerical simulation on effects of rotating cylinder in trailing edge on airfoil aerodynamics characteristic[J]. Computer Simulation, 2017, 34(12): 18–21, 54 (in Chinese). doi: 10.3969/j.issn.1006-9348.2017.12.005
    [14]
    王泽, 陈冠华, 徐欣, 等. 马格努斯圆柱对固定翼增升机理的数值研究[J]. 飞行力学, 2021, 39(6): 15–21. doi: 10.13645/j.cnki.f.d.20210914.004

    WANG Z, CHEN G H, XU X, et al. Numerical investigation of high-lift fixed wing with Magnus cylinders[J]. Flight Dynamics, 2021, 39(6): 15–21 (in Chinese). doi: 10.13645/j.cnki.f.d.20210914.004
    [15]
    JOHNSON S J, BAKER J P, VAN DAM C P, et al. An overview of active load control techniques for wind turbines with an emphasis on microtabs[J]. Wind Energy, 2010, 13(2/3): 239–253. doi: 10.1002/we.356
    [16]
    WATANABE S, KATO H, YAMAMOTO K. Velocity field measurements of a wing-flap configuration via stereoscopic PIV[C]//Proceedings of the 44th AIAA Aero-space Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2006.
    [17]
    LARATRO A, ARJOMANDI M, CAZZOLATO B, et al. Self-noise of NACA 0012 and NACA 0021 aerofoils at the onset of stall[J]. International Journal of Aeroacoustics, 2017, 16(3): 181–195. doi: 10.1177/1475472X17709929
    [18]
    李臣, 孙培廷. 低雷诺数下双元素翼帆的襟翼几何参数对其推进特性影响研究[J]. 推进技术, 2020, 41(11): 2613–2622. doi: 10.13675/j.cnki.tjjs.200110

    LI C, SUN P T. Effects of flap geometry parameters on propulsion characteristics of two-elements wingsail at low Reynolds number[J]. Journal of Propulsion Technology, 2020, 41(11): 2613–2622 (in Chinese). doi: 10.13675/j.cnki.tjjs.200110
    [19]
    陆龙骅. 我国实际大气与国际标准大气[J]. 气象, 1980(7): 1–2. doi: 10.7519/j.issn.1000-0526.1980.07.001

    LU L H. The actual atmosphere of China and the international standard atmosphere[J]. Meteorological Monthly, 1980(7): 1–2 (in Chinese). doi: 10.7519/j.issn.1000-0526.1980.07.001
    [20]
    高歌, 闫文辉, 吴俊宏, 等. 计算流体力学——典型算法与算例[M]. 北京: 机械工业出版社, 2015: 1–14.

    GAO G, YAN W H, WU J H, et al. Computational fluid dynamics – typical algorithms and examples[M]. Beijing: China Machine Press, 2015: 1–14 (in Chinese).
    [21]
    孙烨, 司先才, 马靖丰, 等. 小型无人帆船Z形操纵性能预测分析[J]. 中国舰船研究, 2019, 14(2): 15–20. doi: 10.19693/j.issn.1673-3185.01380

    SUN Y, SI X C, MA J F, et al. Predictive analysis on zigzag maneuverability of small saildrone[J]. Chinese Jour-nal of Ship Research, 2019, 14(2): 15–20 (in Chinese). doi: 10.19693/j.issn.1673-3185.01380
    [22]
    李亮, 刘登成, 洪方文, 等. 风浪作用下船体纵摇运动对螺旋桨激振力特性影响分析[J]. 中国造船, 2020, 61(2): 1–13. doi: 10.3969/j.issn.1000-4882.2020.02.001

    LI L, LIU D C, HONG F W, et al. Influence of hull pitch motion in wind and waves on exciting force of propeller[J]. Shipbuilding of China, 2020, 61(2): 1–13 (in Chinese). doi: 10.3969/j.issn.1000-4882.2020.02.001
    [23]
    周宇, 钱炜祺, 邓有奇, 等. k-ω SST两方程湍流模型中参数影响的初步分析[J]. 空气动力学学报, 2010, 28(2): 213–217. doi: 10.3969/j.issn.0258-1825.2010.02.015

    ZHOU Y, QIAN W Q, DENG Y Q, et al. Introductory analysis of the influence of Menter's k-ω SST turbulence model's parameters[J]. Acta Aerodynamica Sinica, 2010, 28(2): 213–217 (in Chinese). doi: 10.3969/j.issn.0258-1825.2010.02.015
    [24]
    袁武. k-ω两方程湍流模型研究[D]. 北京: 北京航空航天大学, 2006

    YUAN W. Research on k-ω two-equation turbulence model [D]. Beijing: Beihang University, 2006 (in Chinese)
    [25]
    HOLST D, BALDUZZI F, BIANCHINI A, et al. Static and dynamic analysis of a NACA 0021 airfoil section at low Reynolds numbers based on experiments and computational fluid dynamics[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(5): 051015.

Catalog

    Article views (669) PDF downloads (92) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return