CHEN W, LENG W J, HE P, et al. Influence of slip boundary on flow separation and drag of flow past bluff body at high Reynolds numbers[J]. Chinese Journal of Ship Research, 2022, 17(5): 204–211. DOI: 10.19693/j.issn.1673-3185.02935
Citation: CHEN W, LENG W J, HE P, et al. Influence of slip boundary on flow separation and drag of flow past bluff body at high Reynolds numbers[J]. Chinese Journal of Ship Research, 2022, 17(5): 204–211. DOI: 10.19693/j.issn.1673-3185.02935

Influence of slip boundary on flow separation and drag of flow past bluff body at high Reynolds numbers

More Information
  • Received Date: May 30, 2022
  • Revised Date: August 17, 2022
  • Available Online: August 18, 2022
© 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  Flow separation increases the drag and noise of underwater vehicles, and influences the controllability of their control surfaces. Therefore, the influence of slip caused by superhydrophobic surfaces on drag reduction and flow separation is studied.
      Methods  A partial slip boundary condition is developed, and the flow around a circular cylinder and foil with a slip boundary at high Reynolds numbers are numerically simulated.
      Results  The results show that the when the slip length increases, the flow around the cylinder goes through three stages: the turbulent Kármán vortex street, laminar Kármán vortex street and non-separation Stokes flow. The drag coefficient increases first and then decreases, and the vortex shedding frequency increases. For flow around a foil, the separation position moves downstream until the separation region disappears when the slip length increases, and the drag coefficient decreases while the lift coefficient increases.
      Conclusions  The results of this study show that for flow past bluff body at high Reynolds number, the slip boundary can control flow separation and reduce drag effectively, providing technical support for the application of superhydrophobic surfaces for the flow control of underwater vehicle appendages.
  • [1]
    XIONG Y L, YANG D. Influence of slip on the three-dimensional instability of flow past an elongated superhydrophobic bluff body[J]. Journal of Fluid Mechanics, 2017, 814: 69–94. doi: 10.1017/jfm.2017.21
    [2]
    LEGENDRE D, LAUGA E, MAGNAUDET J. Influence of slip on the dynamics of two-dimensional wakes[J]. Journal of Fluid Mechanics, 2009, 633: 437–447. doi: 10.1017/S0022112009008015
    [3]
    SBRAGAGLIA M, BENZI R, BIFERALE L, et al. Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows[J]. Physical Review Letters, 2006, 97(20): 204503. doi: 10.1103/PhysRevLett.97.204503
    [4]
    HYVÄLUOMA J, HARTING J. Slip flow over structured surfaces with entrapped microbubbles[J]. Physical Review Letters, 2008, 100(24): 246001. doi: 10.1103/PhysRevLett.100.246001
    [5]
    黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟[J]. 物理学报, 2014, 63(5): 054701-1–054701-7. doi: 10.7498/aps.63.054701

    HUANG Q G, PAN G, SONG B W. Lattice Boltzmann simulation of slip flow and drag reduction characteristics of hydrophobic surfaces[J]. Acta Physica Sinica, 2014, 63(5): 054701-1–054701-7 (in Chinese). doi: 10.7498/aps.63.054701
    [6]
    GAO P, FENG J J. Enhanced slip on a patterned substrate due to depinning of contact line[J]. Physics of Fluids, 2009, 21(10): 102102. doi: 10.1063/1.3254253
    [7]
    MIN T, KIM J. Effects of hydrophobic surface on skin-friction drag[J]. Physics of Fluids, 2004, 16(7): L55–L58. doi: 10.1063/1.1755723
    [8]
    MIN T, KIM J. Effects of hydrophobic surface on stability and transition[J]. Physics of Fluids, 2005, 17(10): 108106. doi: 10.1063/1.2126569
    [9]
    AGHDAM S K, RICCO P. Laminar and turbulent flows over hydrophobic surfaces with shear-dependent slip length[J]. Physics of Fluids, 2016, 28(3): 035109. doi: 10.1063/1.4943671
    [10]
    BUSSE A, SANDHAM N D. Influence of an anisotropic slip-length boundary condition on turbulent channel flow[J]. Physics of Fluids, 2012, 24(5): 055111. doi: 10.1063/1.4719780
    [11]
    GRUNCELL B R K, SANDHAM N D, MCHALE G. Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay[J]. Physics of Fluids, 2013, 25(4): 043601. doi: 10.1063/1.4801450
    [12]
    PHILIP J R. Flows satisfying mixed no-slip and no-shear conditions[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 1972, 23(3): 353–372.
    [13]
    DAVIS A M J, LAUGA E. Hydrodynamic friction of fakir-like superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2010, 661: 402–411. doi: 10.1017/S0022112010003460
    [14]
    JELLY T O, JUNG S Y, ZAKI T A. Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture[J]. Physics of Fluids, 2014, 26(9): 095102. doi: 10.1063/1.4894064
    [15]
    H.史里希延. 边界层理论[M]. 徐燕侯, 译. 北京: 科学出版社, 1988.

    SCHLICHTING H. Boundary layer theory[M]. XU Y H, trans. Beijing: Science Press, 1988 (in Chinese).
    [16]
    詹昊, 李万平, 方秦汉, 等. 不同雷诺数下圆柱绕流仿真计算[J]. 武汉理工大学学报, 2008, 30(12): 129–132.

    ZHAN H, LI W P, FANG Q H, et al. Numerical simulation of the flow around a circular cylinder at various Reynolds number[J]. Journal of Wuhan University of Technology, 2008, 30(12): 129–132 (in Chinese).
    [17]
    庄礼贤, 尹协远, 马晖扬. 流体力学[M]. 合肥: 中国科学技术大学出版社, 1991.

    ZHUANG L X, YIN X Y, MA H Y. Fluid dynamics[M]. Hefei: University of Science and Technology of China Press, 1991 (in Chinese).
  • Cited by

    Periodical cited type(2)

    1. 吴继飞,孔文杰,李国帅,田书玲. 先进飞行器雷诺数效应若干研究进展及展望. 空气动力学学报. 2024(08): 35-59+34 .
    2. 徐龙武. 疏水装置对蒸汽真空泵的重要作用及疏水系统优化. 辽宁化工. 2023(08): 1172-1174+1184 .

    Other cited types(3)

Catalog

    Article views (747) PDF downloads (84) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return