Citation: | CHEN W, LENG W J, HE P, et al. Influence of slip boundary on flow separation and drag of flow past bluff body at high Reynolds numbers[J]. Chinese Journal of Ship Research, 2022, 17(5): 204–211. DOI: 10.19693/j.issn.1673-3185.02935 |
[1] |
XIONG Y L, YANG D. Influence of slip on the three-dimensional instability of flow past an elongated superhydrophobic bluff body[J]. Journal of Fluid Mechanics, 2017, 814: 69–94. doi: 10.1017/jfm.2017.21
|
[2] |
LEGENDRE D, LAUGA E, MAGNAUDET J. Influence of slip on the dynamics of two-dimensional wakes[J]. Journal of Fluid Mechanics, 2009, 633: 437–447. doi: 10.1017/S0022112009008015
|
[3] |
SBRAGAGLIA M, BENZI R, BIFERALE L, et al. Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows[J]. Physical Review Letters, 2006, 97(20): 204503. doi: 10.1103/PhysRevLett.97.204503
|
[4] |
HYVÄLUOMA J, HARTING J. Slip flow over structured surfaces with entrapped microbubbles[J]. Physical Review Letters, 2008, 100(24): 246001. doi: 10.1103/PhysRevLett.100.246001
|
[5] |
黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟[J]. 物理学报, 2014, 63(5): 054701-1–054701-7. doi: 10.7498/aps.63.054701
HUANG Q G, PAN G, SONG B W. Lattice Boltzmann simulation of slip flow and drag reduction characteristics of hydrophobic surfaces[J]. Acta Physica Sinica, 2014, 63(5): 054701-1–054701-7 (in Chinese). doi: 10.7498/aps.63.054701
|
[6] |
GAO P, FENG J J. Enhanced slip on a patterned substrate due to depinning of contact line[J]. Physics of Fluids, 2009, 21(10): 102102. doi: 10.1063/1.3254253
|
[7] |
MIN T, KIM J. Effects of hydrophobic surface on skin-friction drag[J]. Physics of Fluids, 2004, 16(7): L55–L58. doi: 10.1063/1.1755723
|
[8] |
MIN T, KIM J. Effects of hydrophobic surface on stability and transition[J]. Physics of Fluids, 2005, 17(10): 108106. doi: 10.1063/1.2126569
|
[9] |
AGHDAM S K, RICCO P. Laminar and turbulent flows over hydrophobic surfaces with shear-dependent slip length[J]. Physics of Fluids, 2016, 28(3): 035109. doi: 10.1063/1.4943671
|
[10] |
BUSSE A, SANDHAM N D. Influence of an anisotropic slip-length boundary condition on turbulent channel flow[J]. Physics of Fluids, 2012, 24(5): 055111. doi: 10.1063/1.4719780
|
[11] |
GRUNCELL B R K, SANDHAM N D, MCHALE G. Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay[J]. Physics of Fluids, 2013, 25(4): 043601. doi: 10.1063/1.4801450
|
[12] |
PHILIP J R. Flows satisfying mixed no-slip and no-shear conditions[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 1972, 23(3): 353–372.
|
[13] |
DAVIS A M J, LAUGA E. Hydrodynamic friction of fakir-like superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2010, 661: 402–411. doi: 10.1017/S0022112010003460
|
[14] |
JELLY T O, JUNG S Y, ZAKI T A. Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture[J]. Physics of Fluids, 2014, 26(9): 095102. doi: 10.1063/1.4894064
|
[15] |
H.史里希延. 边界层理论[M]. 徐燕侯, 译. 北京: 科学出版社, 1988.
SCHLICHTING H. Boundary layer theory[M]. XU Y H, trans. Beijing: Science Press, 1988 (in Chinese).
|
[16] |
詹昊, 李万平, 方秦汉, 等. 不同雷诺数下圆柱绕流仿真计算[J]. 武汉理工大学学报, 2008, 30(12): 129–132.
ZHAN H, LI W P, FANG Q H, et al. Numerical simulation of the flow around a circular cylinder at various Reynolds number[J]. Journal of Wuhan University of Technology, 2008, 30(12): 129–132 (in Chinese).
|
[17] |
庄礼贤, 尹协远, 马晖扬. 流体力学[M]. 合肥: 中国科学技术大学出版社, 1991.
ZHUANG L X, YIN X Y, MA H Y. Fluid dynamics[M]. Hefei: University of Science and Technology of China Press, 1991 (in Chinese).
|
1. |
吴继飞,孔文杰,李国帅,田书玲. 先进飞行器雷诺数效应若干研究进展及展望. 空气动力学学报. 2024(08): 35-59+34 .
![]() | |
2. |
徐龙武. 疏水装置对蒸汽真空泵的重要作用及疏水系统优化. 辽宁化工. 2023(08): 1172-1174+1184 .
![]() |