Citation: | ZENG G Q, MA G C, ZHANG L, et al. Virtual real mapping method of marine condensate feed water system based on multi-domain modeling[J]. Chinese Journal of Ship Research, 2022, 18(Supp 1): 1–12. DOI: 10.19693/j.issn.1673-3185.02975 |
[1] |
黎南, 张欣. 国外舰船蒸汽动力技术发展的启示[J]. 中国舰船研究, 2016, 11(3): 89–96. doi: 10.3969/j.issn.1673-3185.2016.03.016
LI N, ZHANG X. The revelation from the development of foreign marine steam turbine power plants[J]. Chinese Journal of Ship Research, 2016, 11(3): 89–96 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.03.016
|
[2] |
郭睿楠. 船舶辅锅炉系统建模与仿真研究[D]. 大连: 大连海事大学, 2017.
GUO R N. Research on modeling and simulation of marine auxiliary boiler system[D]. Dalian: Dalian Maritime University, 2017 (in Chinese).
|
[3] |
周少伟, 吴炜, 张涛, 等. 舰船动力系统数字孪生技术体系研究[J]. 中国舰船研究, 2021, 16(2): 151–156. doi: 10.19693/j.issn.1673-3185.01858
ZHOU S W, WU W, ZHANG T, et al. Digital twin technical system for marine power systems[J]. Chinese Journal of Ship Research, 2021, 16(2): 151–156 (in Chinese). doi: 10.19693/j.issn.1673-3185.01858
|
[4] |
张霖. 关于数字孪生的冷思考及其背后的建模和仿真技术[J]. 系统仿真学报, 2020, 32(4): 1–10.
ZHANG L. Reflection on digital twins and modeling and simulation technology behind them[J]. Journal of System Simulation, 2020, 32(4): 1–10 (in Chinese).
|
[5] |
FOTIAS N, BAO R, NIU H, et al. A Modelica library for modelling of electrified powertrain digital twins[C]//Proceedings of International 14th Modelica Conference 2021. Linköping, Sweden: Linköping University, Research Institutes of Sweden and Modelica Association, 2021: 249–261.
|
[6] |
VERING C, MEHRFELD P, NÜRENBERG M, et al. Unlocking potentials of building energy systems' operational efficiency: application of digital twin design for HVAC systems[C]//16th International Conference of the International Building Performance Simulation. Rome: Curran Associates, 2019.
|
[7] |
MALOZEMOV A A, SOLOMONENKO M V, MALOZEMOV G A. Numerical simulation of power plants with reciprocating engines using Modelica language[C]//2019 International Russian Automation Conference (RusAutoCon). Sochi: IEEE, 2019: 1-5.
|
[8] |
骆伟超. 基于Digital Twin的数控机床预测性维护关键技术研究[D]. 济南: 山东大学, 2020.
LUO W C. Research on the key technology of machine tool predictive maintenance based on digital twin[D]. Jinan: Shandong University, 2020 (in Chinese).
|
[9] |
李宝超. 基于Digital Twin模型的3C非标检测设备精益优化设计研究[D]. 济南: 山东大学, 2018.
LI B C. Research on method of lean optimization design of 3C non-standard testing equipment based on digital twin model[D]. Ji'nan: Shandong University, 2018 (in Chinese).
|
[10] |
周林, 毛志杰, 陈英梅, 等. 基于多领域联合建模的卫星通信装备数字孪生构建方法[C]//2020中国系统仿真与虚拟现实技术高层论坛论文集. 北京: 北京国信融合信息技术研究院, 2020: 20–24.
ZHOU L, MAO Z J, CHEN Y M, et al. Digital twin construction method of satellite communication equipment based on multi-domain joint modeling[C]//Proceedings of 2020 China System Simulation and Virtual Reality Technology High Level Forum. Beijing: Beijing Guoxin Fusion Information Technology Research Institute, 2020: 20–24 (in Chinese).
|
[11] |
吕晓磊. 基于火电厂热力设备特征的大数据应用技术研究[D]. 济南: 山东大学, 2021.
LV X L. Research on application technology of big data based on characteristics of thermal equipment in thermal power plant[D]. Ji'nan: Shandong University, 2021 (in Chinese).
|
[12] |
胡梦岩, 孔繁丽, 余大利, 等. 数字孪生在先进核能领域中的关键技术与应用前瞻[J]. 电网技术, 2021, 45(7): 2514–2522. doi: 10.13335/j.1000-3673.pst.2021.0335
HU M Y, KONG F L, YU D L, et al. Key technology and prospects of digital twin in field of advanced nuclear energy[J]. Power System Technology, 2021, 45(7): 2514–2522 (in Chinese). doi: 10.13335/j.1000-3673.pst.2021.0335
|
[13] |
方志刚. 复杂装备系统数字孪生: 赋能基于模型的正向研发和协同创新[M]. 北京: 机械工业出版社, 2021.
FANG Z G. Digital twins of complex equipment systems: enabling model-based forward R&D and collaborative innovation[M]. Beijing: China Machine Press, 2021 (in Chinese).
|
[14] |
王春晓. 基于数字孪生的数控机床多领域建模与虚拟调试关键技术研究[D]. 济南: 山东大学, 2018.
WANG C X. Multi-domain modeling and virtual debugging of CNC machine tool based on digital twin[D]. Ji'nan: Shandong University, 2018 (in Chinese).
|
[15] |
TWT社区. 数字孪生在工业制造中的应用领域及技术体系构建[EB/OL]. [2022-07-30]. https://www.infoobs.com/article/20220125/52295.html.
TWT Community. Application fields and technical system construction of digital twins in industrial manufacturing[EB/OL]. [2022-07-30]. https://www.infoobs.com/article/20220125/52295.html (in Chinese).
|
[16] |
ELMQVIST H, MATTSSON S E, OTTER M. Modelica-a language for physical system modeling, visualization and interaction[C]//Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No. 99TH8404). Kohala Coast: IEEE, 1999: 630−639.
|
[17] |
罗伟伟. 同元软控助力复杂系统数字孪生落地应用[EB/OL]. [2022-6-13]. https://mp.weixin.qq.com/s/nLPkkoRuYvzktF_d6oLzOw.
LUO W W. Digital twin landing application of complex system assisted by Tong Yuan soft control information technology Co. , Ltd[EB/OL]. [2022-06-13]. https://mp.weixin.qq.com/s/nLPkkoRuYvzktF_d6oLzOw (in Chinese).
|
[18] |
杨元龙, 孙玲, 张晓滨, 等. 基于数字孪生的舰船蒸汽动力总体模型框架研究[J]. 中国舰船研究, 2021, 16(2): 157–167. doi: 10.19693/j.issn.1673-3185.01884
YANG Y L, SUN L, ZHANG X B, et al. Analysis on the overall model framework of ship steam power based on digital twin[J]. Chinese Journal of Ship Research, 2021, 16(2): 157–167 (in Chinese). doi: 10.19693/j.issn.1673-3185.01884
|
[19] |
陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1–18. doi: 10.13196/j.cims.2019.01.001
TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing System, 2019, 25(1): 1–18 (in Chinese). doi: 10.13196/j.cims.2019.01.001
|
[20] |
朱国情, 程刚, 孙丰瑞. 基于Modelica的船用冷凝系统图形化建模与仿真[C]//第13届中国系统仿真技术及其应用学术年会论文集. 黄山: 中国自动化学会系统仿真专业委员会, 2011: 217−221.
ZHU G Q, CHENG G, SUN F R. Graphic modeling and simulation of marine condenser system based on Modelica[C]//Proceedings of 13th Chinese Conference on System Simulation Technology & Application. Huangshan, Anhui: System Simulation Committee of China Automation Society, 2011: 217−221 (in Chinese).
|
[21] |
张磊, 杨自春, 刘华瑞, 等. 船用核动力汽轮机组耦合变工况特性及其影响因素研究[J]. 汽轮机技术, 2019, 61(4): 266–270, 274. doi: 10.3969/j.issn.1001-5884.2019.04.008
ZHANG L, YANG Z C, LIU H R, et al. Research on coupling variable condition characteristic of marine nuclear power steam turbine and its influencing factors[J]. Turbine Technology, 2019, 61(4): 266–270, 274 (in Chinese). doi: 10.3969/j.issn.1001-5884.2019.04.008
|
[22] |
AKPA J, DAGDE K K, MOSES B. Development of model for the simulation of an industrial deaerator for boiler feed water production[J]. European Journal of Engineering and Technology, 2019, 7(4): 94–110.
|
[23] |
陈立平, 周凡利, 丁建完, 等. 多领域物理统一建模语言Modelica与MWorks系统建模[M]. 武汉: 华中科技大学出版社, 2019.
CHEN L P, ZHOU F L, DING J W, et al. The unified multi-domain physical modeling language Modelica and Systems modeling application with MWorks[M]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
|
[24] |
杨元龙, 吴炜, 吴金祥, 等. 船舶蒸汽动力系统的快速变负荷运行性能仿真分析[J]. 中国舰船研究, 2018, 13(增刊 1): 121–125. doi: 10.19693/j.issn.1673-3185.01249
YANG Y L, WU W, WU J X, et al. Simulation analysis on performance of fast variable load for marine steam power system[J]. Chinese Journal of Ship Research, 2018, 13(Supp 1): 121–125 (in Chinese). doi: 10.19693/j.issn.1673-3185.01249
|