ZENG G Q, MA G C, ZHANG L, et al. Virtual real mapping method of marine condensate feed water system based on multi-domain modeling[J]. Chinese Journal of Ship Research, 2022, 18(Supp 1): 1–12. DOI: 10.19693/j.issn.1673-3185.02975
Citation: ZENG G Q, MA G C, ZHANG L, et al. Virtual real mapping method of marine condensate feed water system based on multi-domain modeling[J]. Chinese Journal of Ship Research, 2022, 18(Supp 1): 1–12. DOI: 10.19693/j.issn.1673-3185.02975

Virtual real mapping method of marine condensate feed water system based on multi-domain modeling

More Information
  • Received Date: June 21, 2022
  • Revised Date: August 02, 2022
  • Available Online: September 06, 2022
© 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objective  It is difficult to carry out effective online monitoring and condition evaluation using traditional modeling and analysis methods. Therefore, it is imperative to research an accurate and effective virtual real mapping method for the whole life cycle of a marine condensate feed water system.
      Methods  On the basis of multi-domain modeling, this paper combines the mechanism model with multi-source data, uses the multi-domain physical modeling language Modelica/MWorks system simulation platform to build a digital twin model of the condensate feed water system, and integrates online and offline data, numerical calculation, simulation analysis and other methods to evaluate the operating state characteristics of the condensate feed water system.
      Result   The established model can analyze the dynamic characteristics of the condensate feed water system under all working conditions with a static analysis error lower than 2%. The dynamic response trend is consistent with the actual operation.
      Conclusion  This study shows that the proposed method can realize virtual real mapping between the physical entity and the digital twin model of the marine condensate feed water system, thereby laying a foundation for the health management of shipborne thermal equipment.
  • [1]
    黎南, 张欣. 国外舰船蒸汽动力技术发展的启示[J]. 中国舰船研究, 2016, 11(3): 89–96. doi: 10.3969/j.issn.1673-3185.2016.03.016

    LI N, ZHANG X. The revelation from the development of foreign marine steam turbine power plants[J]. Chinese Journal of Ship Research, 2016, 11(3): 89–96 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.03.016
    [2]
    郭睿楠. 船舶辅锅炉系统建模与仿真研究[D]. 大连: 大连海事大学, 2017.

    GUO R N. Research on modeling and simulation of marine auxiliary boiler system[D]. Dalian: Dalian Maritime University, 2017 (in Chinese).
    [3]
    周少伟, 吴炜, 张涛, 等. 舰船动力系统数字孪生技术体系研究[J]. 中国舰船研究, 2021, 16(2): 151–156. doi: 10.19693/j.issn.1673-3185.01858

    ZHOU S W, WU W, ZHANG T, et al. Digital twin technical system for marine power systems[J]. Chinese Journal of Ship Research, 2021, 16(2): 151–156 (in Chinese). doi: 10.19693/j.issn.1673-3185.01858
    [4]
    张霖. 关于数字孪生的冷思考及其背后的建模和仿真技术[J]. 系统仿真学报, 2020, 32(4): 1–10.

    ZHANG L. Reflection on digital twins and modeling and simulation technology behind them[J]. Journal of System Simulation, 2020, 32(4): 1–10 (in Chinese).
    [5]
    FOTIAS N, BAO R, NIU H, et al. A Modelica library for modelling of electrified powertrain digital twins[C]//Proceedings of International 14th Modelica Conference 2021. Linköping, Sweden: Linköping University, Research Institutes of Sweden and Modelica Association, 2021: 249–261.
    [6]
    VERING C, MEHRFELD P, NÜRENBERG M, et al. Unlocking potentials of building energy systems' operational efficiency: application of digital twin design for HVAC systems[C]//16th International Conference of the International Building Performance Simulation. Rome: Curran Associates, 2019.
    [7]
    MALOZEMOV A A, SOLOMONENKO M V, MALOZEMOV G A. Numerical simulation of power plants with reciprocating engines using Modelica language[C]//2019 International Russian Automation Conference (RusAutoCon). Sochi: IEEE, 2019: 1-5.
    [8]
    骆伟超. 基于Digital Twin的数控机床预测性维护关键技术研究[D]. 济南: 山东大学, 2020.

    LUO W C. Research on the key technology of machine tool predictive maintenance based on digital twin[D]. Jinan: Shandong University, 2020 (in Chinese).
    [9]
    李宝超. 基于Digital Twin模型的3C非标检测设备精益优化设计研究[D]. 济南: 山东大学, 2018.

    LI B C. Research on method of lean optimization design of 3C non-standard testing equipment based on digital twin model[D]. Ji'nan: Shandong University, 2018 (in Chinese).
    [10]
    周林, 毛志杰, 陈英梅, 等. 基于多领域联合建模的卫星通信装备数字孪生构建方法[C]//2020中国系统仿真与虚拟现实技术高层论坛论文集. 北京: 北京国信融合信息技术研究院, 2020: 20–24.

    ZHOU L, MAO Z J, CHEN Y M, et al. Digital twin construction method of satellite communication equipment based on multi-domain joint modeling[C]//Proceedings of 2020 China System Simulation and Virtual Reality Technology High Level Forum. Beijing: Beijing Guoxin Fusion Information Technology Research Institute, 2020: 20–24 (in Chinese).
    [11]
    吕晓磊. 基于火电厂热力设备特征的大数据应用技术研究[D]. 济南: 山东大学, 2021.

    LV X L. Research on application technology of big data based on characteristics of thermal equipment in thermal power plant[D]. Ji'nan: Shandong University, 2021 (in Chinese).
    [12]
    胡梦岩, 孔繁丽, 余大利, 等. 数字孪生在先进核能领域中的关键技术与应用前瞻[J]. 电网技术, 2021, 45(7): 2514–2522. doi: 10.13335/j.1000-3673.pst.2021.0335

    HU M Y, KONG F L, YU D L, et al. Key technology and prospects of digital twin in field of advanced nuclear energy[J]. Power System Technology, 2021, 45(7): 2514–2522 (in Chinese). doi: 10.13335/j.1000-3673.pst.2021.0335
    [13]
    方志刚. 复杂装备系统数字孪生: 赋能基于模型的正向研发和协同创新[M]. 北京: 机械工业出版社, 2021.

    FANG Z G. Digital twins of complex equipment systems: enabling model-based forward R&D and collaborative innovation[M]. Beijing: China Machine Press, 2021 (in Chinese).
    [14]
    王春晓. 基于数字孪生的数控机床多领域建模与虚拟调试关键技术研究[D]. 济南: 山东大学, 2018.

    WANG C X. Multi-domain modeling and virtual debugging of CNC machine tool based on digital twin[D]. Ji'nan: Shandong University, 2018 (in Chinese).
    [15]
    TWT社区. 数字孪生在工业制造中的应用领域及技术体系构建[EB/OL]. [2022-07-30]. https://www.infoobs.com/article/20220125/52295.html.

    TWT Community. Application fields and technical system construction of digital twins in industrial manufacturing[EB/OL]. [2022-07-30]. https://www.infoobs.com/article/20220125/52295.html (in Chinese).
    [16]
    ELMQVIST H, MATTSSON S E, OTTER M. Modelica-a language for physical system modeling, visualization and interaction[C]//Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No. 99TH8404). Kohala Coast: IEEE, 1999: 630−639.
    [17]
    罗伟伟. 同元软控助力复杂系统数字孪生落地应用[EB/OL]. [2022-6-13]. https://mp.weixin.qq.com/s/nLPkkoRuYvzktF_d6oLzOw.

    LUO W W. Digital twin landing application of complex system assisted by Tong Yuan soft control information technology Co. , Ltd[EB/OL]. [2022-06-13]. https://mp.weixin.qq.com/s/nLPkkoRuYvzktF_d6oLzOw (in Chinese).
    [18]
    杨元龙, 孙玲, 张晓滨, 等. 基于数字孪生的舰船蒸汽动力总体模型框架研究[J]. 中国舰船研究, 2021, 16(2): 157–167. doi: 10.19693/j.issn.1673-3185.01884

    YANG Y L, SUN L, ZHANG X B, et al. Analysis on the overall model framework of ship steam power based on digital twin[J]. Chinese Journal of Ship Research, 2021, 16(2): 157–167 (in Chinese). doi: 10.19693/j.issn.1673-3185.01884
    [19]
    陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1–18. doi: 10.13196/j.cims.2019.01.001

    TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing System, 2019, 25(1): 1–18 (in Chinese). doi: 10.13196/j.cims.2019.01.001
    [20]
    朱国情, 程刚, 孙丰瑞. 基于Modelica的船用冷凝系统图形化建模与仿真[C]//第13届中国系统仿真技术及其应用学术年会论文集. 黄山: 中国自动化学会系统仿真专业委员会, 2011: 217−221.

    ZHU G Q, CHENG G, SUN F R. Graphic modeling and simulation of marine condenser system based on Modelica[C]//Proceedings of 13th Chinese Conference on System Simulation Technology & Application. Huangshan, Anhui: System Simulation Committee of China Automation Society, 2011: 217−221 (in Chinese).
    [21]
    张磊, 杨自春, 刘华瑞, 等. 船用核动力汽轮机组耦合变工况特性及其影响因素研究[J]. 汽轮机技术, 2019, 61(4): 266–270, 274. doi: 10.3969/j.issn.1001-5884.2019.04.008

    ZHANG L, YANG Z C, LIU H R, et al. Research on coupling variable condition characteristic of marine nuclear power steam turbine and its influencing factors[J]. Turbine Technology, 2019, 61(4): 266–270, 274 (in Chinese). doi: 10.3969/j.issn.1001-5884.2019.04.008
    [22]
    AKPA J, DAGDE K K, MOSES B. Development of model for the simulation of an industrial deaerator for boiler feed water production[J]. European Journal of Engineering and Technology, 2019, 7(4): 94–110.
    [23]
    陈立平, 周凡利, 丁建完, 等. 多领域物理统一建模语言Modelica与MWorks系统建模[M]. 武汉: 华中科技大学出版社, 2019.

    CHEN L P, ZHOU F L, DING J W, et al. The unified multi-domain physical modeling language Modelica and Systems modeling application with MWorks[M]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
    [24]
    杨元龙, 吴炜, 吴金祥, 等. 船舶蒸汽动力系统的快速变负荷运行性能仿真分析[J]. 中国舰船研究, 2018, 13(增刊 1): 121–125. doi: 10.19693/j.issn.1673-3185.01249

    YANG Y L, WU W, WU J X, et al. Simulation analysis on performance of fast variable load for marine steam power system[J]. Chinese Journal of Ship Research, 2018, 13(Supp 1): 121–125 (in Chinese). doi: 10.19693/j.issn.1673-3185.01249

Catalog

    Article views (353) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return