Citation: | JI Y Y, WANG D Y. Near-field acoustic reconstruction method based on three-dimensional N-shaped convolution neural network and frequency focal-KH regularization [J]. Chinese Journal of Ship Research, 2023, 18(6): 186–196. DOI: 10.19693/j.issn.1673-3185.03127 |
Low sampling rates on reconstruction surfaces cause high reconstruction error in near-field acoustic holography. Therefore, a deep learning-based approach which is applicable to planar sound sources and high-precision reconstruction with low sampling rates is put forward.
A three-dimensional N-shaped convolution neural network for near-field acoustic reconstruction is established to extract features in the frequency dimension in order to make up for sparse sampling in the spatial dimension. A frequency focal mechanism, namely an adaptive frequency weight focus mechanism, is put forward to improve reconstruction precision in the natural frequency and high frequency. Moreover, this paper also raises frequency-scaled focal loss and frequency-scaled focal Kirchhoff–Helmholtz (KH) loss, which are considered regularization. To validate the proposed methods, datasets are created with COMSOL Multiphysics and Matlab.
The mean error range of 100–2 000 Hz of the algorithm proposed in this paper is only 4.96%, higher than those of SRCNN and PV-NN.
The proposed method is verified as having the potential to reconstruct the accurate velocity fields of sound sources under low sampling rates.
[1] |
赵欣阳, 祝熠, 梅志远, 等. 不同筋材对复合材料加筋板水中透声性能影响试验研究[J]. 中国舰船研究, 2023, 18(3): 197–204. doi: 10.19693/j.issn.1673-3185.02535
ZHAO X Y, ZHU Y, MEI Z Y, et al. Experimental study on effect of different reinforcements on sound tranmission performance of composite stiffened plates in water[J]. Chinese Journal of Ship Research, 2023, 18(3): 197–204 (in Chinese). doi: 10.19693/j.issn.1673-3185.02535
|
[2] |
李广生, 陈美霞, 原春晖. 基于陆上振动测试的水中圆柱壳结构声振响应计算方法[J]. 中国舰船研究, 2022, 17(6): 252–260. doi: 10.19693/j.issn.1673-3185.02414
LI G S, CHEN M X, YUAN C H. Calculation method of underwater acoustic and vibration response of cabin segment based on onshore vibration test[J]. Chinese Journal of Ship Research, 2022, 17(6): 252–260 (in Chinese). doi: 10.19693/j.issn.1673-3185.02414
|
[3] |
廖健, 何琳, 陈宗斌, 等. 潜艇操舵系统噪声综述[J]. 中国舰船研究, 2022, 17(5): 74–84. doi: 10.19693/j.issn.1673-3185.02391
LIAO J, HE L, CHEN Z B, et al. Overview of submarine steering system noise[J]. Chinese Journal of Ship Research, 2022, 17(5): 74–84 (in Chinese). doi: 10.19693/j.issn.1673-3185.02391
|
[4] |
左翔, 陈欢. 基于矢量声压组合基阵的柱面分布噪声源近场高分辨定位方法[J]. 中国舰船研究, 2017, 12(4): 147–150. doi: 10.3969/j.issn.1673-3185.2017.04.023
ZUO X, CHEN H. Near-field and high-resolution cylind-rical noise source location method based on vector sound pressure array[J]. Chinese Journal of Ship Research, 2017, 12(4): 147–150 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.04.023
|
[5] |
胡清扬, 李灿灿, 郭世旭. 虚拟声源定位的等效源近场声全息算法[J]. 舰船科学技术, 2022, 44(11): 164–168. doi: 10.3404/j.issn.1672-7649.2022.11.034
HU Q Y, LI C C, GUO S X. Equivalent source near-field acoustic holography algorithm based on virtual sound source localization[J]. Ship Science and Technology, 2022, 44(11): 164–168 (in Chinese). doi: 10.3404/j.issn.1672-7649.2022.11.034
|
[6] |
李彪, 李希友, 王志强, 等. 统计最优柱面近场声全息参数选取方法研究[J]. 舰船科学技术, 2018, 40(3): 120–127.
LI B, LI X Y, WANG Z Q, et al. Research on parameter selection for the statistically optimal cylindrical near-field acoustical holography[J]. Ship Science and Technology, 2018, 40(3): 120–127 (in Chinese).
|
[7] |
陈汉涛, 郭文勇, 韩江桂, 等. 船舶机舱内高频弱声源近场声全息方法[J]. 舰船科学技术, 2019, 41(11): 138–143,147. doi: 10.3404/j.issn.1672-7649.2019.11.028
CHEN H T, GUO W Y, HAN J G, et al. Near-field acoustic holography method for high frequency weak sound source in ship cabin[J]. Ship Science and Technology, 2019, 41(11): 138–143,147 (in Chinese). doi: 10.3404/j.issn.1672-7649.2019.11.028
|
[8] |
WANG J Z, ZHANG Z F, HUANG Y Z, et al. A 3D convolutional neural network based near-field acoustical holography method with sparse sampling rate on measur-ing surface[J]. Measurement, 2021, 177: 109297. doi: 10.1016/j.measurement.2021.109297
|
[9] |
WILLIAMS E G. Fourier acoustics: sound radiation and nearfield acoustical holography[M]. San Diego: Academic Press, 1999: 67-89.
|
[10] |
CHARDON G, DAUDET L, PEILLOT A, et al. Near-field acoustic holography using sparse regularization and compressive sampling principles[J]. The Journal of the Acoustical Society of America, 2012, 132(3): 1521–1534. doi: 10.1121/1.4740476
|
[11] |
FERNANDEZ-GRAND E, XENAKI A. Compressive sensing with a spherical microphone array[J]. The Journal of the Acoustical Society of America, 2016, 139(2): EL45–EL49. doi: 10.1121/1.4942546
|
[12] |
HALD J. A comparison of iterative sparse equivalent source methods for near-field acoustical holography[J]. The Journal of the Acoustical Society of America, 2018, 143(6): 3758–3769. doi: 10.1121/1.5042223
|
[13] |
HALD J. Fast wideband acoustical holography[J]. The Journal of the Acoustical Society of America, 2016, 139(4): 1508–1517. doi: 10.1121/1.4944757
|
[14] |
FERNANDEZ-GRAND E, XENAKI A, GERSTOFT P. A sparse equivalent source method for near-field acoustic holography[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 532–542. doi: 10.1121/1.4974047
|
[15] |
BI C X, LIU Y, XU, L, et al. Sound field reconstruction using compressed modal equivalent point source method[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 73–79. doi: 10.1121/1.4973567
|
[16] |
BI C X, ZHANG F M, ZHANG X Z, et al. Sound field reconstruction using block sparse Bayesian learning equivalent source method[J]. The Journal of the Acoustical Society of America, 2022, 151(4): 2378–2390. doi: 10.1121/10.0010103
|
[17] |
伍松, 魏晟弘, 吴小龙. 压缩感知等效源法对板件近场重构精度改进的研究[J]. 机械科学与技术, 2023, 42(6): 870-877.
WU S, WEI S H, WU X L, Improvement of near-field reconstruction accuracy of plate using compressed sensing equivalent source method[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 870-877 (in Chinese).
|
[18] |
JANSSENS O, SLAVKOVIKJ V, VERVISCH B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound and Vibration, 2016, 377: 331–345. doi: 10.1016/j.jsv.2016.05.027
|
[19] |
ZHANG Y Y, LI X Y, GAO L, et al. Intelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder method[J]. Measurement, 2020, 151: 107232. doi: 10.1016/j.measurement.2019.107232
|
[20] |
OLIVIERI M, PEZZOLI M, MALVERMI R, et al. Near-field acoustic holography analysis with convolutional neural networks[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Seoul, Korea: Institute of Noise Control Engineering, 2020: 5607−5618.
|
[21] |
OLIVIERI M, PEZZOLI M, ANTONACCI F, et al. A physics-informed neural network approach for nearfield acoustic holography[J]. Sensors, 2021, 21(23): 7834. doi: 10.3390/s21237834
|