Citation: | LIU Z H, ZHANG Y, HE J S. Strut optimization analysis of azimuth thruster with contra-rotating propellers[J]. Chinese Journal of Ship Research, 2023, 18(Supp 1): 1–7. DOI: 10.19693/j.issn.1673-3185.03313 |
This paper aims to investigate the effect of the strut geometry on the open water performance of the azimuth thruster with contra-rotating propellers (CRPs ).
The RANS method and k-ω turbulence model are applied to predict the hydrodynamic performance of an azimuth thruster with CRPs and different strut design schemes at model scale and real scale in open water. Meanwhile, the flow field characteristics and wake fraction of the rear propeller are explored, and analysis on the flow separation at the stern of the strut after and before optimization is carried out.
The results show that the optimization scheme of the struts moving forward and the leading edge thinning increases the propeller open water efficiency by 1.01%. The optimization scheme of the struts adopting a twist design and the strut section introducing cambers increases that value by 1.15%. In addition, the flow separation at the model scale is more serious than that at the real scale.
It is found that the optimized struts can reduce the flow separation at the stern, improve the rear propeller absorption of the wake vortex energy of the front propeller and increase the inflow of the rear propeller, which has practical engineering significance for improving the propulsion performance of an azimuth thruster with CRPs.
[1] |
辛公正, 丁恩宝, 唐登海. 对转螺旋桨升力面设计方法[J]. 船舶力学, 2006, 10(2): 40–46.
XIN G Z, DING E B, TANG D H. A design method for contra-rotating propeller by lifting-surface method[J]. Journal of Ship Mechanics, 2006, 10(2): 40–46 (in Chinese).
|
[2] |
马骋, 钱正芳, 陈科, 等. 双桨式吊舱推进器水动力性能CFD预报方法研究[J]. 船舶力学, 2014, 18(5): 516–523. doi: 10.3969/j.issn.1007-7294.2014.05.005
MA C, QIAN Z F, CHEN K, et al. Research on the CFD prediction method of hydrodynamic performance of tandem type podded propulsor[J]. Journal of Ship Mechanics, 2014, 18(5): 516–523 (in Chinese). doi: 10.3969/j.issn.1007-7294.2014.05.005
|
[3] |
杨晨俊, 钱正芳, 马骋. 吊舱对螺旋桨水动力性能的影响[J]. 上海交通大学学报, 2003, 37(8): 1229–1233 (in Chinese). doi: 10.3321/j.issn:1006-2467.2003.08.022
YANG C J, QIAN Z F, MA C. Influences of pod on the pro-peller performance[J]. Journal of Shanghai Jiaotong University, 2003, 37(8): 1229–1233 (in Chinese). doi: 10.3321/j.issn:1006-2467.2003.08.022
|
[4] |
沈兴荣, 蔡荣泉, 冯学梅, 等. 黏性流场中吊舱推进器水动力性能数值研究[J]. 中国造船, 2010, 51(1): 17–26.
SHEN X R, CAI R Q, FENG X M, et al. Study on hydro-dynamic performance of podded propulsion in viscous flow[J]. Shipbuilding of China, 2010, 51(1): 17–26 (in Chinese).
|
[5] |
ISLAM M F, VEITCH B, BOSE N, et al. Numerical study of hub taper angle on podded propeller performance[J]. Marine Technology, 2006, 43(1): 1–10.
|
[6] |
LIU P F, ISLAM M, VEITCH B. Some unsteady propul-sive characteristics of a podded propeller unit under maneuvering operation[C]//Proceedings of the First International Symposium on Marine Propulsors Smp’ 09. Trondheim, Norway: NRC, 2009: 507−516.
|
[7] |
HAEMAELAEINEN R, VAN HEERD J. Wave damping aftbody with hybrid podded propulsors[J]. Transactions of the Society of Naval Architects and Marine Engineers, 2003, 111: 33–48.
|
[8] |
王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
WANG F J. Computational fluid dynamics analysis: principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004 (in Chinese).
|
[9] |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598–1605. doi: 10.2514/3.12149
|
[10] |
王超, 黄胜, 常欣, 等. 基于滑移网格与RNG k-ε湍流模型的桨舵干扰性能研究[J]. 船舶力学, 2011, 15(7): 715–721.
WANG C, HUANG S, CHANG X, et al. Research on the hydrodynamics performance of propeller-rudder interaction based on sliding mesh and RNG k-ε model[J]. Journal of Ship Mechanics, 2011, 15(7): 715–721 (in Chinese).
|
[11] |
徐嘉启, 熊鹰, 王展智. 混合式CRP推进器操舵工况水动力性能数值研究[J]. 中国舰船研究, 2017, 12(2): 63–70,99. doi: 10.3969/j.issn.1673-3185.2017.02.008
XU J Q, XIONG Y, WANG Z Z. Numerical research of hydrodynamic performance of hybrid CRP podded propulsor in steering conditions[J]. Chinese Journal of Ship Research, 2017, 12(2): 63–70,99 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.02.008
|
[12] |
黄永生, 杨晨俊, 董小倩. 对转桨推进的高速水下航行体实尺度自航计算与分析[J]. 中国舰船研究, 2018, 13(6): 34–42. doi: 10.19693/j.issn.1673-3185.01118
HUANG Y S, YANG C J, DONG X Q. Full-scale simulation and analysis of self-propulsion performance of CRP-propelled high speed underwater vehicles[J]. Chinese Journal of Ship Research, 2018, 13(6): 34–42 (in Chinese). doi: 10.19693/j.issn.1673-3185.01118
|
[13] |
洪方文, 张志荣, 刘登成, 等. 船舶螺旋桨流场及水动力数值分析[J]. 水动力学研究与进展, 2020, 35(1): 68–73.
HONG F W, ZHANG Z R, LIU D C, et al. Numerical simulation on flow fields and hydrodynamic performance of ship propeller[J]. Chinese Journal of Hydrodynamics, 2020, 35(1): 68–73 (in Chinese).
|
[14] |
HEINKE C, HEINKE H J. Open water and cavitation tests with the powermaster marine 7 MW CRP thruster: Report 4938[R]. Hamburg:Schiffbau-Versuchsanstalt Potsdam GmbH, 2020.
|
[1] | LIU Anyu, LIU Bin, LEI Jiajing, QIN Kai, WU Weiguo. Multi-scale analysis of marine carbon/glass hybrid composite top-hat stiffened panel structure for integrated design[J]. Chinese Journal of Ship Research, 2024, 19(6): 257-267. DOI: 10.19693/j.issn.1673-3185.03459 |
[2] | ZHANG Xiaoduan, LIU Bin, WU Weiguo, LEI Jiajing, WEI Qing. Ultimate strength analysis of composite stiffened panels based on multi-scale approach[J]. Chinese Journal of Ship Research, 2023, 18(2): 64-73. DOI: 10.19693/j.issn.1673-3185.03006 |
[3] | CHANG Shengming, DING Enbao, SUN Cong, WANG Chao, LIU Guishen. Analysis of cavitation number and scale effect of hydrofoil cavitation initiation[J]. Chinese Journal of Ship Research, 2022, 17(3): 178-186, 204. DOI: 10.19693/j.issn.1673-3185.02358 |
[4] | JI Nan, QIAN Zhipeng, LI Haoran, WAN Decheng. Simulation of zigzag maneuver and flow field characteristics for full-scale ship[J]. Chinese Journal of Ship Research, 2022, 17(3): 93-101. DOI: 10.19693/j.issn.1673-3185.02726 |
[5] | HUANG Yongsheng, YANG Chenjun, DONG Xiaoqian. Full-scale simulation and analysis of self-propulsion performance of CRP-propelled high speed underwater vehicles[J]. Chinese Journal of Ship Research, 2018, 13(6): 34-42. DOI: 10.19693/j.issn.1673-3185.01118 |
[6] | ZHANG Haipeng, ZHANG Donghan, GUO Chunyu, WANG Lianzhou, LIU Tian. Numerical analysis of the scale effect of the nominal wake field of KCS[J]. Chinese Journal of Ship Research, 2017, 12(1): 1-7. DOI: 10.3969/j.issn.1673-3185.2017.01.001 |
[7] | GUO Chunyu, ZHANG Qi, CHEN Ge, WANG Lianzhou. 基于SDM方法的船艉伴流场尺度效应研究与修正[J]. Chinese Journal of Ship Research, 2015, 10(6): 1-7. DOI: 10.3969/j.issn.1673-3185.2015.06.001 |
[8] | TONG Bo, WANG Yongsheng, YANG Qiongfang, SU Yongsheng, YI Wenbin. Numerical Prediction for the Hydrodynamic Performance of a Ferry Propeller[J]. Chinese Journal of Ship Research, 2014, 9(1): 52-58. DOI: 10.3969/j.issn.1673-3185.2014.01.008 |
[9] | WU Zhengzheng, FAN Kai, YIN Dewu. 船模与实船水下电场相似性分析[J]. Chinese Journal of Ship Research, 2012, 7(6): 112-115. DOI: 10.3969/j.issn.1673-3185.2012.06.018 |
[10] | Xiang Jiuyang, Mao Xiaofei. The Hull Variation Based on the Main Hull Parameters[J]. Chinese Journal of Ship Research, 2008, 3(4): 15-18,25. DOI: 10.3969/j.issn.1673-3185.2008.04.004 |