Citation: | LI W, WANG Y, NING J, et al. Unmanned ship heading tracking control strategy with state quantization and input quantization[J]. Chinese Journal of Ship Research, 2024, 19(1): 111–118 (in both Chinese and English). DOI: 10.19693/j.issn.1673-3185.03318 |
This paper develops a heading tracking design strategy for unmanned ships with state quantization and input quantization in order to address the problem of limited communication at sea for unmanned ships on the water surface.
First, a control law is designed on the basis of backstepping and combined with dynamic surface control to reduce the computational complexity of the virtual control law. An extended state observer is also designed to estimate uncertainties and unknown disturbances. Second, all state variables and control variables in the control system are assumed to be quantized by the uniform quantizer, and the quantized state feedback information is only available for the tracking control design. A controller of unmanned ships based on the extended state observer and using quantized states is recursively designed to ensure the tracking of the desired heading. The boundedness of the quantization errors between quantized variables and non-quantized variables in the closed-loop system is analyzed by presenting several theoretical lemmas.
Based on the Lyapunov stability theory, the stability of the designed unmanned ship heading tracking control system with state quantization and input quantization is demonstrated, and the simulation results verify the effectiveness of the resulting tracking scheme.
The results of this study can provide references for the heading tracking of unmanned ships.
[1] |
高鹏, 万磊, 徐钰斐, 等. 基于固定时间扩张状态观测器的底栖式AUV点镇定控制[J]. 中国舰船研究, 2022, 17(4): 71–78. doi: 10.19693/j.issn.1673-3185.02420
GAO P, WAN L, XU Y F, et al. Point stabilization control of benthic AUV based on fixed-time extended state observer[J]. Chinese Journal of Ship Research, 2022, 17(4): 71–78 (in Chinese). doi: 10.19693/j.issn.1673-3185.02420
|
[2] |
伊戈, 刘忠, 张建强, 等. 基于改进终端滑模控制的USV航向跟踪控制方法[J]. 电光与控制, 2020, 27(10): 12–16,21.
YI G, LIU Z, ZHANG J Q, et al. A USV heading tracking control method based on improved terminal sliding mode control[J]. Electronics Optics & Control, 2020, 27(10): 12–16,21 (in Chinese).
|
[3] |
宁君, 陈汉民, 李伟, 等. 基于扩张状态观测器的有限时间船舶编队控制[J]. 中国舰船研究, 2023, 18(1): 60–66. doi: 10.19693/j.issn.1673-3185.02438
NING J, CHEN H M, LI W, et al. Finite-time ship formation control based on extended state observer[J]. Chinese Journal of Ship Research, 2023, 18(1): 60–66 (in Chinese). doi: 10.19693/j.issn.1673-3185.02438
|
[4] |
吴群妹, 陈中标. 模型参考神经网络算法在船舶航向控制的应用[J]. 舰船科学技术, 2020, 42(22): 10–12.
WU Q M, CHEN Z B. Application of model reference neural network algorithm inship course control[J]. Ship Science and Technology, 2020, 42(22): 10–12 (in Chinese).
|
[5] |
MA S F, ZHANG W J, YIN J C, et al. RBF-network-based predictive ship course control[C]//2020 Chinese Control and Decision Conference (CCDC). Hefei,China: IEEE, 2020: 3506–3511.
|
[6] |
安顺, 何燕, 王龙金. 基于反步自适应控制算法的船舶航向控制方法[J]. 机电设备, 2020, 37(6): 65–69, doi: 10.16443/j.cnki.31-1420.2020.06.014
AN S, HE Y, WANG L J. A ship course control approach based on backstepping adaptive algorithm[J]. Mechanical and Electrical Equipment, 2020, 37(6): 65–69 (in Chinese). doi: 10.16443/j.cnki.31-1420.2020.06.014
|
[7] |
韩丽君. 基于神经网络算法的船舶航向控制系统设计[C]//2022年第五届智慧教育与人工智能发展国际学术会议论文集. 北京: 香港新世纪文化出版社有限公司, 2022: 21−23.
HAN L J. Design of ship heading control system based on neural network algorithms[C]//Proceedings of the 5th International Conference on Intelligent Education and Artificial Intelligence Development in 2022. Beijing, China: Hong Kong New Century Culture Publishing House, 2022: 21−23. (in Chinese).
|
[8] |
李国进, 李晨曦, 易泽仁. 基于事件触发的船舶航向逻辑切换自适应控制[J]. 舰船科学技术, 2022, 44(11): 76–81.
LI G J, LI C X, YI Z R. Event–triggered logic switch adaptive control for course keeping[J]. Ship Science and Technology, 2022, 44(11): 76–81 (in Chinese).
|
[9] |
储瑞婷, 刘志全. 基于FTESO和漂角补偿的船舶航向滑模控制[J]. 中国舰船研究, 2022, 17(1): 71–79. doi: 10.19693/j.issn.1673-3185.02267
CHU R T, LIU Z Q. Ship course sliding mode control system based on FTESO and sideslip angle compensation[J]. Chinese Journal of Ship Research, 2022, 17(1): 71–79 (in both Chinese and English). doi: 10.19693/j.issn.1673-3185.02267
|
[10] |
王文新, 刘上, 张国庆, 等. 考虑舵机故障的船舶鲁棒自适应航向保持控制[J]. 中国舰船研究, 2023, 18(1): 116–123. doi: 10.19693/j.issn.1673-3185.02525
WANG W X, LIU S, ZHANG G Q, et al. Robust adaptive course-keeping control of under-actuated ships with the rudder failure[J]. Chinese Journal of Ship Research, 2023, 18(1): 116–123 (in both Chinese and English). doi: 10.19693/j.issn.1673-3185.02525
|
[11] |
ZHOU J, WEN C Y, YANG G H. Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal[J]. IEEE Transactions on Automatic Control, 2014, 59(2): 460–464. doi: 10.1109/TAC.2013.2270870
|
[12] |
刘文慧. 具有量化输入的非线性系统的自适应控制和采样数据控制[D]. 南京: 南京理工大学, 2017.
LIU W H. Adaptive control and sampled-data control for nonlinear systems with input quantization[D]. Nanjing: Nanjing University of Science and Technology, 2017 (in Chinese).
|
[13] |
齐晓静, 刘文慧. 一类具有输入量化和未知扰动的非线性系统的自适应有限时间动态面控制[J]. 南京信息工程大学学报(自然科学版), 2020, 12(3): 330–340.
QI X J, LIU W H. Adaptive finite-time dynamic surface control for nonlinear systems with input quantization and unknown disturbances[J]. Journal of Nanjing University of Information Science Technology (Natural Science Edition), 2020, 12(3): 330–340 (in Chinese).
|
[14] |
WU J, SUN W, SU S F, et al. Adaptive asymptotic tracking control for input-quantized nonlinear systems with multiple unknown control directions[J/OL]. IEEE Transactions on Cybernetics, 2022: 1−10(2022-07-12) [2023-04-10].https://ieeexplore.ieee.org/document/9827984.
|
[15] |
ZHOU J, WEN C Y, WANG W, et al. Adaptive backstepping control of nonlinear uncertain systems with quantized states[J]. IEEE Transactions on Automatic Control, 2019, 64(11): 4756–4763. doi: 10.1109/TAC.2019.2906931
|
[16] |
KIM B M, YOO S J. Adaptive neural control of uncertain MIMO nonlinear pure-feedback systems via quantized state feedback[J]. IEEE Access, 2022, 10: 38729–38741. doi: 10.1109/ACCESS.2022.3165567
|
[17] |
杨文奇, 周思羽, 卢建华, 等. 基于ESO补偿的故障舰载机滑模容错着舰控制技术[J]. 电光与控制, 2023, 30(7): 28–34,56.
YANG W Q, ZHOU S Y, LU J H, et al. Research on fault tolerant control technology of carrier aircraft based on ESO compensation[J]. Electronics Optics & Control, 2023, 30(7): 28–34,56(in Chinese).
|
[18] |
李军, 李古月. 基于改进人工势场的路径规划与跟踪控制[J]. 重庆交通大学学报(自然科学版), 2020, 39(9): 25–30, 37.
LI J, LI G Y. Path planning and tracking control based on improved artificial potential field[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(9): 25–30, 37 (in Chinese).
|
[19] |
ZHENG B C, YANG G H. Quantized output feedback stabilization of uncertain systems with input nonlinearities via sliding mode control[J]. International Journal of Robust and Nonlinear Control, 2014, 24(2): 228–246. doi: 10.1002/rnc.2883
|
[20] |
PENG Z H, WANG D, LI T S, et al. Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2527–2535. doi: 10.1109/TCYB.2019.2914717
|
[21] |
PARAVISI M, SANTOS D H, JORGE V, et al. Unmanned surface vehicle simulator with realistic environmental disturbances[J]. Sensors, 2019, 19(5): 1068. doi: 10.3390/s19051068
|
[22] |
BROCKETT R W, LIBERZON D. Quantized feedback stabilization of linear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(7): 1279–1289. doi: 10.1109/9.867021
|
[23] |
FARRELL J A, POLYCARPOU M, SHARMA M, et al. Command filtered backstepping[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1391–1395. doi: 10.1109/TAC.2009.2015562
|
[24] |
向伦凯, 李晓, 蒋云, 等. 无人水面艇推进系统模型辨识[J]. 中国舰船研究, 2019, 14(增刊1): 7–11, 22. doi: 10.19693/j.issn.1673-3185.01200
XIANG L K, LI X, JIANG Y, et al. Model identification of unmanned surface vehicle propulsion system[J]. Chinese Journal of Ship Research, 2019, 14(Supp 1): 7–11, 22 (in Chinese). doi: 10.19693/j.issn.1673-3185.01200
|
1. |
陈宝文,郑妙珊,李芊,李玥萱. 基于指令滤波器的无人艇抗饱和动态面跟踪控制器设计. 中国高新科技. 2024(11): 33-35 .
![]() |