Tian Zhengdong, Qi Wanjiang, Xiong Ying. 基于遗传算法的水面舰艇舰载武器方案优化研究[J]. Chinese Journal of Ship Research, 2011, 6(4): 51-55. DOI: 10.3969/j.issn.1673-3185.2011.04.010
Citation: Tian Zhengdong, Qi Wanjiang, Xiong Ying. 基于遗传算法的水面舰艇舰载武器方案优化研究[J]. Chinese Journal of Ship Research, 2011, 6(4): 51-55. DOI: 10.3969/j.issn.1673-3185.2011.04.010

基于遗传算法的水面舰艇舰载武器方案优化研究

More Information
  • Received Date: May 26, 2011
  • Revised Date: June 19, 2011
  • Accepted Date: August 19, 2011
© 2011 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 以DDG 51驱逐舰的概念设计为例,应用遗传算法解决水面舰艇概念设计中舰载武器方案优选问题。在舰载武器方案优选过程中,应用权重系数法将作战性能和使用风险目标线性加权成统一评价函数,得到满足设计变量取值范围和约束条件的优化方案,取得较理想的优化结果。与DDG 51驱逐舰原始武器配置方案相比,通过该方法优化得出的方案具有较为明显的优越性。

  • [1]
    雷德明,严新平.多日标智能优化算法及其应用[M].北 京:科学出版社.2009:2-10.
    [2]
    ZHU L L,ZHANG H C,JING Y Z.FG as-based data association algorithm for multi-sensor multi-target tracking[J]. Chinese Journal ofAeronautics,2003,16(3):23-29.
    [3]
    DUCHEYNE E.Mutiple Objective forest management using GIS and genetic optimization techniques[D].Belgium:U· niversity of Ghent,2003.
    [4]
    孙海涛,熊鹰,韩峰.基于多目标进化算法的舰船概念设计方法研究[C]//中同造船工程学会第四届全国船舶与海洋工程学术会议论文集,2009:330-335.
    [5]
    黄胜,孟祥印,常欣.基于遗传算法的船体主甲板外展程度寻优[J].海军工程大学学报,2009,21(4):34-39.
    [6]
    ZHANG H,SUN Z L,YANG S L,et a1.Investigation on synthetical optimization of ship navigation performance [J].Journal of Ship Mechanics,2010,14(9):988-997.
    [7]
    雷英杰,张善文,李绪武,等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005:95105.
    [8]
    DEMKO D.Tools for multi-ohjective and multi-disciplinary optimization in nava]ship[D].American:Virginia Polytechnic Institute and State University,2005.
    [9]
    郑金华.多目标进化算法及其应用[M].北京:科学出版 社.2007:1-4.
    [10]
    胡良剑,孙晓君.MATLAB数学实验[M].北京:高等教育出版社.2006:257-263.
  • Related Articles

    [1]YAN Xiulin, DUAN Bing, ZHANG Xingang. Optimization design of cosecant square beam antenna based on genetic algorithm[J]. Chinese Journal of Ship Research, 2020, 15(5): 85-89. DOI: 10.19693/j.issn.1673-3185.01685
    [2]ZHAO Wei, LIU Huanwei. Simulation analysis of multi-mode thrust allocation strategy based on genetic algorithm[J]. Chinese Journal of Ship Research, 2020, 15(3): 161-168. DOI: 10.19693/j.issn.1673-3185.01644
    [3]XU Xiaoying, ZHOU Pan, WANG Kuan. Mooring optimization design based on neural network and genetic algorithm[J]. Chinese Journal of Ship Research, 2017, 12(5): 97-103. DOI: 10.3969/j.issn.1673-3185.2017.05.012
    [4]ZHU Ying, XIANG Xianbo, YANG Yuntao. General cargo ship loading problems based on the hybrid genetic algorithm[J]. Chinese Journal of Ship Research, 2015, 10(6): 126-132. DOI: 10.3969/j.issn.1673-3185.2015.06.019
    [5]HU Yao, JIANG Zhifang, XIONG Zhiguo, WANG Jian. 基于改进型遗传算法的舰船舱室布局优化[J]. Chinese Journal of Ship Research, 2014, 9(1): 20-30. DOI: 10.3969/j.issn.1673-3185.2014.01.004
    [6]HU Yao, JIANG Zhifang, XIONG Zhiguo, WANG Jian. 基于SLP和遗传算法的容积型船舶内部舱室位置布局设计优化[J]. Chinese Journal of Ship Research, 2013, 8(5): 19-26. DOI: 10.3969/j.issn.1673-3185.2013.05.004
    [7]REN Xin, KONG Yan, ZHOU Bisong, ZHANG Kai, MA Li. 改进遗传算法在船用核动力装置概率因果故障诊断中的应用[J]. Chinese Journal of Ship Research, 2013, 8(1): 107-111. DOI: 10.3969/j.issn.1673-3185.2013.01.017
    [8]WANG Jian, XIE Wei, XIONG Zhiguo, HUANG Junshen, WU Dongwei, ZHENG Xiangyang. 基于多目标遗传算法的飞行甲板参数化设计优化方法[J]. Chinese Journal of Ship Research, 2013, 8(1): 7-12. DOI: 10.3969/j.issn.1673-3185.2013.01.002
    [9]Wang Xuelian, Huang Jun. 遗传算法在船舶电缆布局优化设计中的应用研究[J]. Chinese Journal of Ship Research, 2009, 4(4): 72-75,80. DOI: 10.3969/j.issn.1673-3185.2009.04.015
    [10]Tian Xujun, Yah Guoqiang Hu Gangyi, . 基于遗传算法的肘板结构型式优化[J]. Chinese Journal of Ship Research, 2007, 2(2): 23-26. DOI: 10.3969/j.issn.1673-3185.2007.02.006

Catalog

    Article views (319) PDF downloads (1051) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return