Citation: | ZHANG Wei, YUE Yongwei, ZHANG Aman, SUN Longquan. 基于AUTODYN的气泡与固定壁面相互作用数值模拟[J]. Chinese Journal of Ship Research, 2012, 7(6): 23-30. DOI: 10.3969/j.issn.1673-3185.2012.06.004 |
阐述了AUTODYN软件模拟水下爆炸气泡的原理及过程,通过球对称模型以及重力场中气泡的实验数据与AUTODYN计算结果的对比,验证其在计算气泡脉动时间和压力等方面的计算精度,并以此为基础研究近壁面水下爆炸气泡的动力学特征以及影响因素,包括无量纲距离对气泡形状的影响,固壁面对气泡最大半径、脉动周期和射流时间的影响,以及近固壁面气泡射流速度及压力的变化等,总结相关规律,为气泡的数值模拟研究提供参考。
[1] |
张阿漫,王诗平,白兆宏,等. 不同环境下气泡脉动特性实验研究[J]. 力学学报,2011,43(1):71-83.ZHANG A M,WANG S P,BAI Z H,et al. Experimental study on bubble pulse features under different circumstances[J]. Chinese Journal of Theoretical and Applied Mechanics,2011,43(1):71-83.
|
[2] |
张阿漫,姚熊亮. 近自由面水下爆炸气泡的运动规律研究[J]. 物理学报,2008,57(1):339-353.ZHANG A M,YAO X L. The law of the underwater explosion bubble motion near free surface[J]. Acta Physica Sinica,2008,57(1):339-353.
|
[3] |
VUYST T D,VIGNJEVIC R,CAMPBELL J C. Coupling between meshless and finite element methods[J].International Journal of Impact Engineering,2005,31(8):1054-1064.
|
[4] |
COLE R H. Underwater explosion[M].Princeton:Princeton University Press,1948.
|
[5] |
GEERS T L,HUNTER K S. An integrated waveeffects model for an underwater explosion bubble[J].The Journal of the Acoustical Society of America,2002,111(4):1584-1601.
|
[6] |
BRUJAN E A,NAHEN K,SCHMIDT P,et al. Dynamics of laser-induced cavitation bubbles near an elastic boundary:influence of the elastic modulus[J]. Journal of Fluid Mechanics,2001,433:251-281.
|
[7] |
KLASEBOER E,HUNG K C,WANG C,et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure[J]. Journal of Fluid Mechanics,2005,537:387-413.
|
[8] |
BJERKNES. Fields of force[M]. New York:Columbia University Press,1966.
|
[9] |
张阿漫. 水下爆炸气泡三维动态特性研究[D]. 哈尔滨:哈尔滨工程大学,2006.
|
[1] | CHEN Dejin, YAN Jin, LUO Yangyang, HUANG Chao, ZOU Lülong. Analysis of vibration and sound characteristics of fluid conveying pipeline considering the effect of acoustic-solid coupling[J]. Chinese Journal of Ship Research, 2021, 16(3): 137-143, 151. DOI: 10.19693/j.issn.1673-3185.02193 |
[2] | Wang Guanghuai, Sun Lu, Wang Chang, Hao Rui, Wang Jianjun. Numerical simulation of steam submerged jet and condensation[J]. Chinese Journal of Ship Research, 2019, 14(4): 135-142. DOI: 10.19693/j.issn.1673-3185.01296 |
[3] | XU Jiaqi, MEI Zhiyuan. Research progress in sonar dome turbulent boundary layer wall fluctuating pressure[J]. Chinese Journal of Ship Research, 2018, 13(4): 57-69. DOI: 10.19693/j.issn.1673-3185.01084 |
[4] | ZHANG Tao, ZHU Xiaojun, PENG Fei, MIN Shaosong. Prediction of the Development of Turbulent Boundary Layers on Rough Walls Based on the Integration Method[J]. Chinese Journal of Ship Research, 2014, 9(5): 39-43. DOI: 10.3969/j.issn.1673-3185.2014.05.007 |
[5] | LI Weiguang, LI Anbang, XU Xinhua, ZHANG Yang, XIE Junlong. 复杂船舶围壁传热系数取值探讨[J]. Chinese Journal of Ship Research, 2014, 9(2): 78-83. DOI: 10.3969/j.issn.1673-3185.2014.02.014 |
[6] | LI Weiguang, LI Anbang, XU Xinhua, SHI Hongmei. 基于数值模拟的复杂船舶围壁传热计算[J]. Chinese Journal of Ship Research, 2013, 8(6): 85-90. DOI: 10.3969/j.issn.1673-3185.2013.06.015 |
[7] | Pang Tianzhao, Guo Wei, Sheng Yuanping, Guo Tao. 基于流固耦合的U型管流致振动数值分析[J]. Chinese Journal of Ship Research, 2011, 6(4): 29-33. DOI: 10.3969/j.issn.1673-3185.2011.04.006 |
[8] | Meng Fanming, Pang Fuzhen, Yao Xionglian, Peng Yi. 弹塑性固有应变法在厚壁球面舱壁结构焊接中的应用[J]. Chinese Journal of Ship Research, 2009, 4(1): 67-72. DOI: 10.3969/j.issn.1673-3185.2009.01.015 |
[9] | Yu Meng. 基于ANSYS的输流管道流固耦合特性分析[J]. Chinese Journal of Ship Research, 2007, 2(5): 54-57,67. DOI: 10.3969/j.issn.1673-3185.2007.05.013 |
[10] | Peng Ying, Yang Ping. Dynamic Response of Stiffened Plates under In-Plane Fluid-Solid Impact Loading[J]. Chinese Journal of Ship Research, 2006, 1(4): 16-20. DOI: 10.3969/j.issn.1673-3185.2006.04.004 |