LI Zengguang. The bending vibration characteristic of a propulsion shafting and hull structure coupled system at low frequencies[J]. Chinese Journal of Ship Research, 2016, 11(3): 74-78. DOI: 10.3969/j.issn.1673-3185.2016.03.013
Citation: LI Zengguang. The bending vibration characteristic of a propulsion shafting and hull structure coupled system at low frequencies[J]. Chinese Journal of Ship Research, 2016, 11(3): 74-78. DOI: 10.3969/j.issn.1673-3185.2016.03.013

The bending vibration characteristic of a propulsion shafting and hull structure coupled system at low frequencies

More Information
  • Received Date: July 29, 2015
  • Available Online: February 12, 2023
© 2016 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • In this paper, a finite element simulation model of the propulsion shafting and hull structure system is developed for analyzing the coupled bending vibration characteristic at low frequencies. The natural frequencies and modal shapes are analyzed through numerical simulation and are then compared with those from simplified simulation models. Simulation results show that at frequencies lower than the natural frequency of the first bending vibration mode, the coupled system vibrates under the hull-beam mode, and the shafting follows the hull. Near each natural frequency of the shafting, a vibration mode of hull structure also appears, and, therefore, the propeller-shafting's vibration can be transferred to the hull structure effectively. If the mass and cross-section area moment of the hull are far larger than those of shafts, and when the vibration modes of propulsion shafting are the only research subjects, the hull structure can be treated as a rigid body with little error. However, the coupled vibration mode and the shafts' anti-phase vibration mode may not be correctly reflected.
  • [1]
    秦春云, 杨志荣, 饶柱石, 等. 船舶推进轴系纵向振动抑制研究[J]. 噪声与振动控制, 2013, 33(3): 147-152.

    QIN Chunyun, YANG Zhirong, RAO Zhushi, et al. Study on suppression of the longitudinal vibration of ship's propulsion shafting system[J]. Noise and Vibration Control, 2013, 33(3): 147-152.
    [2]
    沈小寒. 大功率复杂推进轴系扭振特性的研究[D]. 上海: 上海交通大学, 2013.
    [3]
    刘刚, 吴炜, 饶春晓, 等. 基于传递矩阵法的船舶轴系回旋振动计算研究[J]. 中国舰船研究, 2010, 5(1): 60-63.

    LIU Gang, WU Wei, RAO Chunxiao, et al. Numerical calculation of whirling vibration of ship shafts based on transfer matrices method[J]. Chinese Journal of Ship Research, 2010, 5(1): 60-63.
    [4]
    周平, 赵德有. 动态刚度阵法在船体总振动计算中的应用[J]. 船舶力学, 2006, 10(4): 126-132.

    ZHOU Ping, ZHAO Deyou. Application of dynamic stiffness matrix method to compute the vibration of ship hull[J]. Journal of Ship Mechanics, 2006, 10(4): 126-132.
    [5]
    王显正, 赵德有, 孙超, 等. 船舶总振动固有频率实用算法[J]. 中国舰船研究, 2007, 2(1): 56-58.

    WANG Xianzheng, ZHAO Deyou, SUN Chao, et al. Improved algorithm for the natural frequencies of ship vibration[J]. Chinese Journal of Ship Research, 2007, 2(1): 56-58.
    [6]
    朱理, 庞福振, 康逢辉. 螺旋桨激励力下的舰船振动特性分析[J]. 中国造船, 2011, 52(2): 8-15.

    ZHU Li, PANG Fuzhen, KANG Fenghui. Vibration characteristic of a warship subjected to propeller excitation[J]. Shipbuilding of China, 2011, 52(2): 8-15.
    [7]
    高菊, 陈美霞. 偶极子源与力激励作用下截顶锥形壳振动与声辐射研究[J]. 中国舰船研究, 2011, 6(1): 46-51

    , 55. GAO Ju, CHEN Meixia. Sound and vibration of a truncated conical shell under excitation of dipole source and force[J]. Chinese Journal of Ship Research, 2011, 6(1): 46-51, 55.
    [8]
    李栋梁. 轴系-艇体耦合系统振动声辐射分析与实验研究[D]. 上海: 上海交通大学, 2012.
    [9]
    谢基榕, 徐利刚, 沈顺根, 等. 推进器激励船舶振动辐射声计算方法[J]. 船舶力学, 2011, 15(5): 563-569.

    XIE Jirong, XU Ligang, SHEN Shungen, et al. Calculational method for radiating sound excited by vibration of ship propeller[J]. Journal of Ship Mechanics, 2011, 15(5): 563-569.
    [10]
    DYLEJKO P G, KESSISSOGLOU N J, TSO Y, et al. Optimisation of a resonance changer to minimise the vibration transmission in marine vessels[J]. Journal of Sound and Vibration, 2007, 300(1/2): 101-116.
    [11]
    MERZ S, KINNS R, KESSISSOGLOU N. Structural and acoustic responses of a submarine hull due to propeller forces[J]. Journal of Sound and Vibration, 2009, 325(1/2): 266-286.
    [12]
    CARESTA M, KESSISSOGLOU N J. Reduction of hull-radiated noise using vibroacoustic optimization of the propulsion system[J]. Journal of Ship Research, 2011, 55(3): 149-162.
    [13]
    MURAWSKI L. Shaft line alignment analysis taking ship construction flexibility and deformations into consideration[J]. Marine Structures, 2005, 18(1): 62-84.
    [14]
    严新平, 李志雄, 袁成清, 等. 考虑船体变形耦合作用的船舶推进系统建模与控制[J]. 船海工程, 2011, 40(1): 60-63.

    YAN Xinping, LI Zhixiong, YUAN Chengqing, et al. Modelling and control of marine propulsion system coupled with hull deformation[J]. Ship and Ocean Engineering, 2011, 40(1): 60-63.
    [15]
    秦丽. 大型船舶推进轴系功率流分析理论与方法研究[D]. 武汉: 武汉理工大学, 2014.
    [16]
    帕利O M, 巴依佐夫Γ B, 沃罗涅诺夫E Я. 船舶结构力学手册[M]. 徐秉汉, 徐绚, 徐铭麒, 译. 北京: 国防工业出版社, 2002.

Catalog

    Article views (382) PDF downloads (280) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return