WANG Huiting, BI Yi. Numerical simulation on planar motion mechanism of KCS ship model with a body-force propeller model[J]. Chinese Journal of Ship Research, 2016, 11(4): 29-37,66. DOI: 10.3969/j.issn.1673-3185.2016.04.005
Citation: WANG Huiting, BI Yi. Numerical simulation on planar motion mechanism of KCS ship model with a body-force propeller model[J]. Chinese Journal of Ship Research, 2016, 11(4): 29-37,66. DOI: 10.3969/j.issn.1673-3185.2016.04.005

Numerical simulation on planar motion mechanism of KCS ship model with a body-force propeller model

More Information
  • Received Date: October 22, 2015
  • Available Online: February 10, 2023
© 2016 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • In order to solve the ship maneuvering hydrodynamic derivatives efficiently and accurately, full-appendage KCS ship model is taken in this paper as the studying object. Based on RANS equation and VOF model, a descriptive body-force model is established to represent real propellers on the star-ccm+; the influences of the free surface wave and motion attitudes change on hydrodynamic are taken into account. The oblique motion, the yaw motion, the combination of yaw and drift angle motion on Planar Motion Mechanism (PMM) are simulated, and the athwartship force Y, the yawing moment N, and the heeling moment K are also acquired. The simulation results are then compared with the actual test results: according to the dynamics equation of PMM test, the time history curves of numerical and experimental results are analyzed with least-squares fitting and Fourier integral, where the hydrodynamic derivatives of manipulation are finally obtained. The results demonstrate the feasibility of the proposed method in PMM simulation, though the errors of Y'vvv and N'vvv are slightly larger, the errors of remaining hydrodynamic derivatives are all below 15%.
  • [1]
    BROGLIA R, DI MASCIO A, AMATI G.Aparallel unsteady RANS code for the numerical simulations of free surface flows[C]//Proceedings of the 2nd International Conference on Marine Research and Transportation.Naples, Italy: [s.n.], 2007.
    [2]
    BROGLIA R, MUSCARI R, DIMASCIO A. Numerical simulations of the pure sway and pure yaw motion of the KVLCC-1 and 2 tanker[C]//Proceedings of SIMMAN 2008 Workshop on Verification and Validation of Ship Maneuvering Simulation Methods. Lyngby, Demark: [s.n.], 2008.
    [3]
    TYAGI A, SEN D. Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach[J]. Ocean Engineering, 2006, 33(5/6): 798-809.
    [4]
    SAKAMOTO N, CARRICA PM, STERN F. URANS simulations of static and dynamic maneuvering for surface combatant[C]//Proceedings of SIMMAN 2008 Workshop on Verification and Validation of Ship Maneuvering Simulation Methods. Lyngby, Demark: [s.n.], 2008.
    [5]
    GUILMINEAU E, QUEUTEY P, VISONNEAU M, et al. RANS simulations of a US Navy frigate with PMM motions[C]//Proceedings of SIMMAN 2008 Workshop on Verification and Validation of Ship Maneuvering Simulation Methods. Lyngby, Demark: [s.n.], 2008.
    [6]
    MILLER R W. PMM calculations for the bare and appended DTMB 5415 using the RANS solver CFDSHIP-IOWA[C]//Proceedings of SIMMAN 2008 Workshop on Verification and Validation of Ship Maneuvering Simulation Methods. Lyngby, Demark: [s.n.], 2008.
    [7]
    刘山. 基于CFD技术数值模拟平面运动机构试验[D]. 武汉: 武汉理工大学, 2012. LIU Shan.Numerical simulation of planar motion mechanism test based on CFD technology[D]. Wuhan: Wuhan University of Technology, 2012.
    [8]
    程捷, 张志国, 蒋奉兼, 等. 平面运动机构试验的数值模拟[J]. 水动力学研究与进展, 2013, 28(4): 460-464.

    CHENG Jie, ZHANG Zhiguo, JIANG Fengjian, et al. Numerical simulation of the planar motion mechanism tests[J]. Chinese Journal of Hydrodynamics, 2013, 28(4): 460-464.
    [9]
    杨路春, 庞永杰, 黄利华, 等. 潜艇PMM实验的CFD仿真技术研究[J]. 舰船科学技术, 2009, 31(12): 12-17.

    YANG Luchun, PANG Yongjie, HUANG Lihua, et al. Study of the CFD approach to simulate PMM experiments of submarine[J]. Ship Science and Technology, 2009, 31(12): 12-17.
    [10]
    楼鹏宇. 限制水域中纯横荡运动船体水动力数值计算[D]. 上海: 上海交通大学, 2012. LOU Pengyu. Numerical calculation of the hydrodynamic forces on a ship in pure sway motion in restricted waters[D]. Shanghai: Shanghai Jiao Tong University, 2012.
    [11]
    石爱国, 闻虎, 李理, 等. 船舶浅水水动力导数的数值计算[J]. 中国航海, 2011, 34(3): 69-73

    , 83. SHI Aiguo, WEN Hu, LI Li, et al. Computation of hydrodynamic derivatives for ships in shallow water[J]. Navigation of China, 2011, 34(3): 69-73, 83.
    [12]
    吴召华, 陈作钢, 代燚, 等. 基于体积力法的船舶回转运动水动力数值研究[J]. 中国舰船研究, 2013, 8(4): 12-19.

    WU Zhaohua, CHEN Zuogang, DAI Yi, et al. Numerical study of hydrodynamic force on ships in turning motion based on a body-force propeller model[J]. Chinese Journal of Ship Research, 2013, 8(4): 12-19.
    [13]
    吴召华, 陈作钢, 代燚. 基于体积力法的船体自航性能数值预报[J]. 上海交通大学学报, 2013, 47(6): 943-949.

    WU Zhaohua, CHEN Zuogang, DAI Yi. Numerical prediction of self-propulsion with a body-force propeller model[J]. Journal of Shanghai JiaoTong University, 2013, 47(6): 943-949.
  • Cited by

    Periodical cited type(8)

    1. 郝昊,陈伟民,杜云龙,张青山. 基于体积力法的船舶回转运动数值模拟. 舰船科学技术. 2025(01): 43-48 .
    2. 张锐. 体积力虚拟盘代替泵喷推进器叶片数值模拟及验证. 舰船科学技术. 2023(15): 34-40 .
    3. 陈宇婷,许士华,时嘉昊,刘旭,侯国祥. 基于STAR-CCM+的小型无人双体船水动力性能分析. 中国舰船研究. 2023(05): 73-82 . 本站查看
    4. 冀楠,钱志鹏,李浩然,万德成. 实尺度船舶Z形操纵运动及流场特性模拟. 中国舰船研究. 2022(03): 93-101 . 本站查看
    5. 龙鑫,王先洲,余嘉威,叶斌. 考虑船间干扰的双船操纵运动预报. 中国造船. 2022(03): 167-178 .
    6. 胡芳琳,冯康佳,马向能. 动态PMM实验的数值模拟及线性导数获取方法. 水动力学研究与进展(A辑). 2021(02): 192-200 .
    7. 冯会方,冯大奎,张航,毛斌峰. 采用MMG模型预报船舶的操纵性能. 中国造船. 2020(S2): 291-300 .
    8. 王伟,孙守超,郭春雨,魏少鹏. 船舶最佳纵倾及节能. 应用科技. 2017(05): 1-4 .

    Other cited types(6)

Catalog

    Article views (1033) PDF downloads (350) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return