LI Hongyue, WANG Xihuai, XIAO Jianmei, CHEN Chen. H robust control of load frequency in diesel-battery hybrid electric propulsion ship[J]. Chinese Journal of Ship Research, 2017, 12(3): 120-127. DOI: 10.3969/j.issn.1673-3185.2017.03.017
Citation: LI Hongyue, WANG Xihuai, XIAO Jianmei, CHEN Chen. H robust control of load frequency in diesel-battery hybrid electric propulsion ship[J]. Chinese Journal of Ship Research, 2017, 12(3): 120-127. DOI: 10.3969/j.issn.1673-3185.2017.03.017

H robust control of load frequency in diesel-battery hybrid electric propulsion ship

More Information
  • Received Date: September 26, 2016
  • Available Online: May 07, 2021
© 2017 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Considering the load frequency fluctuation in the shipboard integrated power system caused by such stochastic uncertainty as wind, wave and current, the battery is adopted here to compensate for the difference between diesel generator output power and ship demand power, and the secondary frequency control is used for the diesel generator to guarantee the power balance in the shipboard integrated power system and suppress the frequency fluctuation. The load frequency control problem is modeled as a state space equation, the robust controller is designed by selecting the appropriate sensitivity function and complementary sensitivity function based on the H mixed sensitivity principle, and the controller is solved by the linear matrix inequality(LMI)approach. The amplitude frequency characteristics denote the reasonability of the designed controller and the design requirement is satisfied by the impact of the impulse signal. The simulation results show that, compared with the classical PI controller, the controller designed by the H robust method can significantly suppress frequency fluctuation under stochastic uncertainty, and improve the power variation of the diesel generator, battery and state of charge(SOC). The robust stability and robust performance of the power system are also advanced.
  • [1]
    马伟明.电力电子在舰船电力系统中的典型应用[J].电工技术学报, 2011, 26(5):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201105002.htm

    MA W M. Typical applications of power electronics in naval ship power systems[J]. Transactions of China Electrotechnical Society, 2011, 26(5):1-7(in Chi-nese). http://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201105002.htm
    [2]
    马伟明.舰船综合电力系统中的机电能量转换技术[J].电气工程学报, 2015, 10(4):3-10. http://www.cnki.com.cn/Article/CJFDTOTAL-DQZH201504003.htm

    MA W M. Electromechanical power conversion technol-ogies in vessel integrated power system[J]. Journal of Electrical Engineering, 2015, 10(4):3-10(in Chi-nese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQZH201504003.htm
    [3]
    刘胜, 程垠钟.基于小信号模型的船舶中压直流发电系统稳定性分析[J].中国电机工程学报, 2015, 35(8):1930-1939. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201508013.htm

    LIU S, CHENG Y Z. Small signal model based stabili-ty analysis for shipboard medium voltage DC genera-tion systems[J]. Proceedings of the CSEE, 2015, 35(8):1930-1939(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201508013.htm
    [4]
    LI Y, PENG Y J, LIU F, et al. A controllably induc-tive filtering method with transformer-integrated linear reactor for power quality improvement of shipboard power system[J]. IEEE Transactions on Power Deliv-ery, 2016(99):1-9.
    [5]
    刘自程, 郑泽东, 彭凌, 等.船舶电力推进中十五相感应电机同轴运行及容错控制策略[J].电工技术学报, 2014, 29(3):65-74. http://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201403009.htm

    LIU Z C, ZHENG Z D, PENG L, et al. Fixed joint double fifteen-phase induction motor control and fault-tolerant control in ship propulsion system[J]. Transactions of China Electrotechnical Society, 2014, 29(3):65-74(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201403009.htm
    [6]
    黄靖, 张晓锋, 陈雁, 等.船舶综合电力系统多目标故障恢复模型及应用[J].电工技术学报, 2010, 25(3):130-137. http://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201003024.htm

    HUANG J, ZHANG X F, CHEN Y, et al. Multiobjec-tive optimal model of service restoration for integrated ship power system and its application[J]. Transactions of China Electrotechnical Society, 2010, 25(3):130-137(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201003024.htm
    [7]
    LALDIN O, MOSHIRVAZIRI M, TRESCASES O. Predictive algorithm for optimizing power flow in hy-brid ultracapacitor/battery storage systems for light electric vehicles[J]. IEEE Transactions on Power Elec-tronics, 2013, 28(8):3882-3895. doi: 10.1109/TPEL.2012.2226474
    [8]
    CHEN C, WANG X H, XIAO J M. An energy alloca-tion strategy for hybrid ship DC power system based on genetic algorithm[J]. IETE Journal of Research, 2015, 62(3):301-306.
    [9]
    梁晓龙, 王善铭, 冀路明, 等.基于半物理模拟的柴电-燃联合动力系统控制策略[J].电工技术学报, 2014, 29(3):83-88(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201403011.htm

    LIANG X L, WANG S M, JI L M, et al. Propulsion control strategy of combined diesel-electric and gas tur-bine systems based on semi-physical simulation[J]. Transactions of China Electrotechnical Society, 2014, 29(3):83-88. http://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201403011.htm
    [10]
    PARK H, SUN J, PEKAREK S, et al. Real-time model predictive control for shipboard power manage-ment using the IPA-SQP approach[J]. IEEE Transac-tions on Control Systems Technology, 2015, 23(6):2129-2143. doi: 10.1109/TCST.2015.2402233
    [11]
    SEENUMANI G, SUN J, PENG H. Real-time power management of integrated power systems in all elec-tric ships leveraging multi time scale property[J]. IEEE Transactions on Control Systems Technology, 2012, 20(1):232-240.
    [12]
    PARAN S, VU T V, EL MEZYANI T, et al. MPC-based power management in the shipboard pow-er system[C]//Proceedings of the Electric Ship Tech-nologies Symposium. Alexandria, VA:IEEE, 2015.
    [13]
    BACKLUND P B, SEEPERSAD C C, KIEHNE T M. All-electric ship energy system design using classifi-er-guided sampling[J]. IEEE Transactions on Trans-portation Electrification, 2015, 1(1):77-85. doi: 10.1109/TTE.2015.2426501
    [14]
    ZHAN K Y, GAO H B, CHEN H, et al. Optimal ret-rofitting of a hybrid propulsion system using NSGA-Ⅱ algorithm for trailing suction hopper dredger[C]//Pro-ceedings of the Electric Ship Technologies Sympo-sium. Alexandria, VA:IEEE, 2015.
    [15]
    SCIBERRAS E A, NORMAN R A. Multi-objective design of a hybrid propulsion system for marine ves-sels[J]. IET Electrical Systems in Transportation, 2012, 2(3):148-157. doi: 10.1049/iet-est.2011.0011
    [16]
    IM W S, WANG C, TAN L, et al. Cooperative con-trols for pulsed power load accommodation in a ship-board power system[J]. IEEE Transactions on Power Systems, 2016, 31(6):5181-5189. doi: 10.1109/TPWRS.2016.2538323
    [17]
    TROVÃO J P, MACHADO F, PEREIRINHA P G. Hybrid electric excursion ships power supply system based on a multiple energy storage system[J]. IET Electrical Systems in Transportation, 2016, 6(3):190-201. doi: 10.1049/iet-est.2015.0029
    [18]
    SEENUMANI G, SUN J, PENG H. A hierarchical op-timal control strategy for power management of hybrid power systems in all electric ships applications[C]//Proceedings of the 49th IEEE Conference on Decision and Control. Atlanta, GA:IEEE, 2010:3972-3977.
    [19]
    KIM S Y, CHOE S, KO S, et al. A naval integrated power system with a battery energy storage system:fu-el efficiency, reliability, and quality of power[J]. IEEE Electrification Magazine, 2015, 3(2):22-33. doi: 10.1109/MELE.2015.2413435
    [20]
    SKJONG E, SUUL J A, RYGG A, et al. Sys-tem-wide harmonic mitigation in a diesel-electric ship by model predictive control[J]. IEEE Transac-tions on Industrial Electronics, 2016, 63(7):4008-4019. doi: 10.1109/TIE.2016.2532845
    [21]
    KIM S Y, CHOE S, KO S, et al. Electric propulsion naval ships with energy storage modules through AFE converters[J]. Journal of Power Electronics, 2014, 14(2):402-412. doi: 10.6113/JPE.2014.14.2.402
  • Related Articles

    [1]CHEN Panzhao, GUO Kai, GE Tong, QIAO Lei. Robust and fast trajectory tracking control of UUVs with external disturbances[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04194
    [2]LI Bo, ZHANG Guoqing, ZHANG Xianku, LÜ Hongguang. Robust event-triggered control algorithm for ship dynamic positioning considering dynamic characteristics of actuators[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03581
    [3]QIN Yifeng, LIU Zhiquan. Rudder roll stabilization with robust predictive control based on fuzzy rules[J]. Chinese Journal of Ship Research, 2023, 18(4): 206-214. DOI: 10.19693/j.issn.1673-3185.02822
    [4]WANG Wenxin, LIU Shang, ZHANG Guoqing, ZHANG Xianku. Robust adaptive course-keeping control of under-actuated ships with the rudder failure[J]. Chinese Journal of Ship Research, 2023, 18(1): 116-123. DOI: 10.19693/j.issn.1673-3185.02525
    [5]LIU Yan, FENG Xuchen, YANG Rui, LI Ming, FENG Yifei. H robust control design for coupled Ciscrea AUV model[J]. Chinese Journal of Ship Research, 2021, 16(6): 191-200. DOI: 10.19693/j.issn.1673-3185.02176
    [6]Zhang Xianku, Han Xu. The motion control strategy for intelligent ships based on ship transportation safeguard[J]. Chinese Journal of Ship Research, 2019, 14(S1): 1-6. DOI: 10.19693/j.issn.1673-3185.01634
    [7]LI Hongyue, WANG Xihuai, XIAO Jianmei. Electric propulsion ship secondary frequency control based on variable universe fuzzy method[J]. Chinese Journal of Ship Research, 2018, 13(4): 142-148. DOI: 10.19693/j.issn.1673-3185.01031
    [8]ZHANG Weikang, WANG Guanxue, XU Guohua, LIU Chang, SHEN Xiong. Development of control system in abdominal operating ROV[J]. Chinese Journal of Ship Research, 2017, 12(2): 124-132. DOI: 10.3969/j.issn.1673-3185.2017.02.016
    [9]DING Deyong, WANG Hu, LING Hao, HE Shutao. I型金属夹层结构连接构件强度特性研究及灵敏度分析[J]. Chinese Journal of Ship Research, 2014, 9(2): 22-29. DOI: 10.3969/j.issn.1673-3185.2014.02.005
    [10]Han Xiaoxi, Guangzhen, Yang Yuan. 基于BP神经网络的维修性设计参数灵敏度分析[J]. Chinese Journal of Ship Research, 2008, 3(6): 66-69. DOI: 10.3969/j.issn.1673-3185.2008.06.016
  • Other Related Supplements

  • Cited by

    Periodical cited type(5)

    1. 苏丽,毛奇志. 长江散货船混合动力系统模式切换设计特点分析. 船海工程. 2023(05): 105-108 .
    2. 卢志椿. 电力推进式船舶电机功率控制方法. 舰船科学技术. 2019(02): 94-96 .
    3. 夏敬停,李绍海,赖琛. 船舶并联式油电混合动力系统设计. 船舶工程. 2019(05): 34-39+72 .
    4. 张高明,李维波,华逸飞,范磊,许智豪,徐聪. 基于W5200的双冗余以太网通信系统应用研究. 中国舰船研究. 2018(01): 127-132 . 本站查看
    5. 尚博祥,刘晨,陈博. 多模式船舶电网电能供电稳定性控制系统. 舰船科学技术. 2018(18): 97-99 .

    Other cited types(1)

Catalog

    Article views (501) PDF downloads (189) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return