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0 Introduction
Accurate identification and localization of noise

sources are essential prerequisites for downstream

tasks such as noise reduction analysis and fault

detection in the mechanical structure and equipment

of ships[1-3]. Near-field acoustic reconstruction

provides a non-contact method for source

identification and acoustic visualization. By

sampling holographic acoustic quantities of the

near-field source, the surface vibration velocity of

the source can be reconstructed. This method finds

widespread application in the field of ship

engineering, including underwater noise source

localization and identification[4-6], analysis and

control of noises in ship compartments [7], and

analysis of noise sources in lightweight materials [8].

According to Shannon's sampling theorem, the

holographic spatial distance between two points in

the wavenumber domain during the reconstruction

of the surface vibration velocity of a sound source

should satisfy |kx| < π/Δx and |ky| < π/Δy, where kx

and ky, and Δx and Δy are the wavenumbers and

sampling intervals in the x and y directions
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respectively. When the spatial sampling interval

does not meet this condition, overlap errors, known

as wrap-around errors[9], may occur in the

wavenumber domain reconstruction, leading to

significant reconstruction errors. Expanding the

sampling range and increasing the sampling interval

will significantly increase the measurement cost for

sound source identification and localization in ship

machinery. Additionally, the confined space in

some compartments of the ship makes measure-

ments inconvenient. Therefore, studying near-field

acoustic reconstruction problems under sparse

sampling conditions is highly practical for ship

engineering. The near-field acoustic holography

based on compressed sensing theory[10-12] provides a

solution for high-resolution physical field recon-

struction under sparse sampling conditions[13-17].

Chen et al.[7], combining compressed sensing theory

with the plane equivalent source algorithm,

reconstructed the surface sound pressure distribu-

tion of high-frequency weak sound sources in ship

compartments. However, the effectiveness of

compressed sensing methods depends on the

selection of sparse bases[16], and different types of

sound sources correspond to different sparse bases.

Additionally, the reconstruction errors in the high-

frequency region are also relatively high.

In recent years, scholars have begun to

incorporate deep learning theory into the near-field

acoustic reconstruction problems. Deep learning,

known for its powerful feature extraction

capabilities, has been widely applied in the field of

ship sound and vibration analysis [18-19]. Olivieri et

al. [20], utilizing a two-dimensional convolutional

neural network, introduced a super-resolution

convolutional neural network for near-field acoustic

holography (SRCNN-NAH) and achieved favorable

results on a violin-shaped plate. Subsequently,

Olivieri et al. [21] proposed a loss function based on

the Kirchhoff-Helmholtz (KH) forward sound

radiation equation and released an open dataset.

Wang et al. [8], leveraging an autoencoder, presented

a pressure-velocity neural network model (PV-NN)

and validated a data normalization method suitable

for near-field acoustic reconstruction problems.

This paper focuses on the acoustic field

generated by the stimulated vibration of a

rectangular thin plate in an air medium, intending to

propose a three-dimensional N-shape convolutional

neural network framework for near-field acoustic

holography (3D NCNN-NAH). This framework

aims to enhance the accuracy of near-field acoustic

reconstruction under conditions of hologram

surface and low sampling rate, particularly in

practical ship applications. Additionally, the paper

introduces a loss function comprising frequency

focal-normalization for reconstruction mean square

error, and KH regularization terms to mitigate the

challenge of lower accuracy in the reconstruction of

high-frequency and certain source-specific

frequency intervals. Finally, the effectiveness of the

proposed method will be validated through the

batch construction of datasets using COMSOL

Multiphysics software.

1 Near-field acoustic identifica-
tion

As shown in Fig. 1, the sound pressure, denoted

as p(r, ω), at a point in space, r = [x, y, z]T, can be

expressed using the KH integral equation.

(1)

where ω represents the circular frequency; S

denotes the surface of the sound source, s = [x′ , y′ ,

z′ ]T is the vector of a point on the sound source

surface S; n is the normal direction of the sound

source; gω(r, s) is the Green's function; i is the

imaginary unit; ρ0 is the density of the medium of

the acoustic field; vn is the normal vibration

velocity on the sound source surface. The free-field

Green's formula satisfying the second kind of

boundary condition (Neumann boundary condition)

is given by

(2)

where c is the sound propagation velocity.

Acoustic
radiation

Acoustic source

Fig. 1 Schematic diagram of acoustic radiation

from vibrational sound source

Taking a plate vibrating under external loads and

generating a radiating acoustic field as the example,

from Eq. (1) and Eq. (2), we can observe that if the

JI Y Y, et al. Near-field acoustic reconstruction method based on three-dimensional
N-shaped convolution neural network and frequency focal-KH regularization 2
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acoustic pressure on the plane where the sound

source is located is known, the acoustic pressure at

any point in the radiating field can be derived. The

Euler equation in Eq. (3) is employed to establish a

connection between the acoustic pressure at a

specific point in space and the particle velocity. In

other words, the sound pressure at any point within

the sound field can be inferred from the known

velocity at the sound source surface.

(3)

where v represents the particle velocity at a given

point in space.

When the acoustic pressure on any plane of the

radiating sound field is known, it is not possible to

retroactively deduce the distribution of sound

pressure and vibrational velocity on the sound

source surface using the KH integral equation.

However, when the distance between the

holographic surface and the sound source is much

smaller than the wavelength of the sound wave, it is

possible to capture the evanescent waves in the high

wavenumber domain. In this case, the inverse

problem of acoustic field radiation becomes the

near-field acoustic reconstruction. The equation for

calculating the normal vibrational velocity on the

sound source surface, inverted from the acoustic

pressure in the radiating sound field, is given by

(4)

where vn(x, y, zs) represents the normal vibration

velocity on the sound source surface at a height zs; p

(x, y, zh) is the sound pressure in the radiated sound

field at a height zh; Fx and Fy are velocity transfer

functions, indicating Fourier transforms in spatial

domain with respect to x and y to convert to the

wavenumber domains kx and ky, where kx and ky are

the components of wavenumber in the x and y

directions, respectively; Fx
-1 and Fy

-1 are functions

representing the inverse Fourier transform in the

wavenumber domain to convert back to the spatial

domains x and y; G(kx, ky, zs-zh) is a positional

parameter function.

Due to the ill-posed nature of the inversion

process in Eq. (4), direct solutions are not feasible.

Consequently, various approximate methods have

been developed for near-field acoustic reconstruc-

tion, primarily involving fitting the inverse of the

nonlinear equation Function in Eq. (5).

(5)

Based on the powerful feature extraction

capabilities of convolutional neural networks

(CNNs) based on deep learning, which can

approximate complex nonlinear processes. In light

of the challenges posed by the super-resolution

problem in near-field acoustic reconstruction, this

paper aims to develop a 3D N-type convolutional

neural network framework (3D NCNN-NAH) and a

novel loss function tailored for near-field acoustic

reconstruction. The objective is to effectively fit the

inverse of the nonlinear equation Function, thereby

reducing the number of sampling points on

holographic surfaces while ensuring a high level of

reconstruction accuracy.

2 Super-resolution near-field
acoustic reconstruction based
on 3D NCNN-NAH

2.1 Problem description

In the Cartesian coordinate system, a thin

rectangular plate undergoes harmonic excitation

vibration and radiates a sound field outward. This

paper aims to reconstruct high-resolution velocity

information of the source surface by sampling low-

resolution sound pressure signals on the

holographic surface. As illustrated in Fig. 2, surface

H represents the holographic surface located in the

near field of the sound source, while surface S

represents the plane of the thin plate (sound

source). The sampling resolution of the holographic

surface is Nh × Mh, where Nh and Mh denote the

numbers of sampling points along the x and y

directions, respectively. The reconstruction

resolution of the reconstruction surface is Ns × Ms,

where Ns and Ms represent the numbers of

reconstruction points along the x and y directions,

respectively. In this study, Ns is set to 4Nh, and Ms is

set to 4Mh.

When the same model is subjected to harmonic

excitations of different frequencies at the same

point, it will induce vibrations of the sound source

in different modes. Although the mode forms are

diverse, they are inherently correlated, all reflecting

the intrinsic characteristics of the excited object.

Therefore, rational utilization of frequency domain

information can compensate for the sparsity of

spatial domain features caused by sparse sampling.

Similar to 2D convolution that computes and

extracts features in the spatial domain, this paper

will employ 3D convolution as a feature extractor.

By sliding the convolutional kernel in both spatial

3
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and frequency domains and using convolution

calculations and nonlinear activation functions, we

extract high-dimensional features in this study.

Source surface S Holographic surface H

Fig. 2 Illustration of source surface and holography surface

To facilitate the use of 3D convolution for feature

extraction in both frequency and spatial domains

under the pytorch deep learning framework, this

study adopts a five-dimensional tensor for input and

output. The first dimension represents the batch

dimension, facilitating batch input to ensure a

smoother gradient descent curve. Batch input helps

better represent the overall distribution compared to

individual sample inputs, and it is advantageous for

leveraging the compute unified device architecture

(CUDA) designed for GPU parallel computing,

thereby accelerating training speed. The second

dimension represents the frequency domain, with

harmonic excitations selected at an interval of 10 Hz

within the range of 100-2 000 Hz. Thus, the

number of elements in the second dimension is 191.

The third dimension is the feature channel

dimension, assuming there are m extracting features

of convolution kernels in each step of gradient

descent. This results in a total of m different

features. The fourth and fifth dimensions represent

the spatial domain, with input dimensions being the

sampling point resolution Nh×Mh of the holographic

surface, and the output dimensions being the

resolution Ns × Ms of the reconstruction surface.

In the deep learning algorithm, a neural network

framework with parameters to be optimized is

constructed. Through continuous iterations based

on a substantial amount of data and the back-

propagation algorithm, the mapping from the input

data distribution to the output data distribution can

be obtained. Fig. 3 illustrates the training procedure

of the near-field acoustic reconstruction problem

based on the deep learning method.

Model evaluation

Building an acoustic vibration dataset

Data enhancement
and data cleaning

Dividing training set,
validation set and test set

Forward propagation of neural network model

Reasonable model
construction Weight initialization

Continuous
iteration

Back propagation of neural network model

Construct reasonable
Loss Function

Selection of
optimization algorithmn

Fig. 3 Procedure of deep learning training

2.2 Network framework

For reconstruction-type problems, the encoder-

decoder structure is widely utilized. In the field of

near-field acoustic reconstruction, Olivieri et al. [20]

employed deconvolution in the UNet decoder to

upsample to a resolution equal to the input

resolution. They further extracted features to obtain

a super-resolved reconstructed image. However,

due to the lack of semantic information fusion in

the lower layers of the super-resolution part, the

reconstruction errors are big. Wang et al. [8], in their

designed PV-NN, also used an encoder-decoder

structure, incorporating an autoencoder in the

reconstruction process of the vibrating field on the

source surface.

Addressing the near-field acoustic reconstruction

problem with super-resolution, in this study we

propose a three-dimensional convolutional neural

network consisting of a pre-encoder, encoder, and

decoder. Given its framework shape resembling an

uppercase "N" (Fig. 4), it is abbreviated as 3D

NCNN-NAH. The 3D NCNN-NAH presented in

Fig. 4 introduces a pre-encoder module to

overcome the deficiency in semantic information

for the super-resolution part as identified by

Olivieri et al. [20] in SRCNN. In this study we

replace 2D convolution with 3D convolution to

address the sparsity of spatial sampling on the

holographic surface by extracting serialized

features in the frequency domain. Simultaneously,

the adoption of the deep layer aggregation (DLA)

structure achieves feature map fusion of multi-layer

size and hierarchy. The parameter settings in Fig. 4

are as follows: the batch length B of the input size

is 16; the frequency dimension length F is 191; the

channel dimension length C is 1; Nh × Mh varies

based on the shape of the rectangular thin plate,

JI Y Y, et al. Near-field acoustic reconstruction method based on three-dimensional
N-shaped convolution neural network and frequency focal-KH regularization 4
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with 8 × 8 used for validation in this study. The

dimensions of the output size are the same as those

of input, with Ns × Ms = 32 × 32.

2.2.1 Interpolated upsampling module

Interpolated upsampling involves enhancing the

resolution of low-resolution images through

interpolation. In the 3D NCNN-NAH, the

interpolated upsampling module is positioned

within the precoder module. To supply semantic

information with the original resolution for the

super-resolution features in the encoder and

decoder based on the acoustic pressure features of

the initial holographic surface, the precoder

includes two consecutive layers of interpolated

upsampling. These layers exclusively interpolate

the spatial dimensions, namely dimensions 4 and 5.

In the first layer, bilinear interpolation is employed,

as depicted in Fig. 5 and Eq. (6). In the second

layer, nearest-neighbor interpolation is utilized. In

Fig. 5, point 1, point 2, point 3, point 4 represent

the contribution units of the interpolated data, the

interpolated point is the position of the target data,

and x1, x2, y1, y2 are the data parameters of the

contribution units.

(6)

where p(x, y) is the sound pressure value at

coordinate (x, y), and

are the sound pressure values at points

(x1, y1) and (x2, y2) respectively.

2.2.2 Residual module

For deep neural networks, to address issues such

as gradient vanishing caused by the compounding

effect during backpropagation and error dispersion

due to deep-layer structures, in this paper we adopt

residual modules as the fundamental structure of

the encoder. Each residual structure comprises two

layers of 3D convolution-batch normalization (BN)-

ReLu activation function stacked together, with

residual edge connection on the outer layer, as

depicted in Fig. 6. The 3D convolution kernel size

for feature extraction in the spatial and frequency

domains is (5, 3, 3), while the 3D convolution

kernel size for the neck structure connecting the

encoder and decoder is (5, 1, 1). BN layers are

employed to alleviate data shift issues during the

forward transfer in the network, ensuring data

distribution falls within the non-linear region of the

activation function and providing a certain

regularization effect.

Following the residual module, a maximum

pooling down-sampling layer will be employed to

Interpolated
upsampling module

Residual module

Max-pooling
downsampling layer

Deconvolution
upsampling module

Decoder

Output dimensions:

Encoder

Precoder

Input sizes:

Jump link

Inverse
convolutional+

splice

Inverse
convolutional +

splice

Inverse
convolutional +

splice

Fig. 4 Framework of 3D NCNN-NAH

Fig. 5 Bilinear interpolation block in precoder Fig. 6 Illustration of residual block

3D
convolution

BN
layer

3D
convolution

BN
layer
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decrease the resolution of the feature map. This

aims to enhance the receptive field of the

subsequent convolutional kernel and decrease the

computational load of the network. In this study, the

kernel size for max-pooling downsampling is (1, 2,

2). Considering that the correlation between high-

frequency and low-frequency domains in the

frequency domain is lower than that in the spatial

domain, in this paper we only extend the receptive

field range for the spatial domain.

2.2.3 Deconvolution upsampling module

For the deconvolutional up-sampling, zero-

padding is applied to the feature maps. Other steps

are similar to the regular convolutional modules,

involving the sliding of convolution kernels on the

feature map to extract features and simultaneously

increase the feature map resolution. In this paper

we will utilize deconvolution upsampling module

as the fundamental structure of the decoder and

employ a residual structure to enhance the decoder's

performance. The structure of each deconvolution

up-sampling module is illustrated in Fig. 7. In

comparison with the residual structure, the first 3D

convolution is replaced by 3D deconvolution.

Additionally, low-level semantic information from

previous layers is fused through feature

concatenation, i.e., stacked in the second dimension

(feature dimension).

Low-layer
feature
map

3D
convolution

BN
layer

Splice
3D

convolution
BN

layer

Fig. 7 Illustration of deconvolution module

In this study, when the deep feature fusion

method is employed, a tree-like structure is utilized

to fuse feature maps of different sizes from the pre-

encoder, encoder, and decoder. This choice is

motivated by the need for fine-grained, point-wise

super-resolution reconstruction in the near-field

sound source. Consequently, both local fine-grained

features and global holistic features significantly

influence the final reconstruction results. The deep

feature fusion structure maximally facilitates the

interaction of features with different granularities at

both low and high levels.

2.3 Loss function

The essence of deep neural networks lies in an

optimization problem. The optimization parameters

in 3D NCNN-NAH consist of the convolutional

kernel weight parameters of 3D convolution and 3D

deconvolution, as well as the scaling and bias

parameters of the BN layer. The objective function

is the loss function comprising frequency scaled

focal loss and the KH regularization term. The

optimization process will be carried out using the

Adam gradient descent method.

2.3.1 Frequency scaled focal loss function (FSF-

Loss)

Mean squared error loss (MSE-Loss) function is

commonly employed for deep learning reconstruc-

tion problems, as shown in Eq. (7). The

performance of the network is evaluated by

calculating the mean squared difference between

the reconstructed velocity values of the sound

source surface through the network and the

supervised values.

(7)

where LMSE represents the MSE-Loss function; B, F,

H, W denote the data lengths of a specific

dimension in each dataset within the neural

network; E signifies the mathematical expectation;

v represents the normal velocity of the sound source

surface, where the subscript GT denotes the true

value of the normal velocity, and PRED denotes the

reconstructed value of normal velocity; α, β, γ, ε

refer to the batch dimensions, frequency domain

dimensions, and the width and height directions of

the thin plate, respectively.

However, when the MSE-Loss function is

directly applied to the near-field acoustic

reconstruction problems, the following issues arise:

1) The MSE-Loss function measures absolute

errors. However, in different frequency domains,

especially in the vicinity of the frequency domain

with the inherent features of the sound source, there

is a significant difference in the normal velocity

when compared to other frequency bands. Fig. 8

shows the phase shift (proportional to velocity) of

the normal velocity on the sound source surface of

various points. If the MSE-Loss function is directly

applied, the majority of the loss is composed of

reconstruction loss values near the inherent

features, thereby neglecting the reconstruction

accuracy in non-inherent frequency bands.

2) The accuracy on near-field acoustic reconstruc-

tion in the high-frequency range is generally low.

JI Y Y, et al. Near-field acoustic reconstruction method based on three-dimensional
N-shaped convolution neural network and frequency focal-KH regularization 6
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Samples with low reconstruction accuracy directly

using the MSE-Loss function become hard-to-train

in the frequency domain. This is because, compared

to the low-frequency range, the distribution of the

reconstructed normal velocity field in the high-

frequency range is more complex, and the acoustic

field details are richer. The MSE-Loss function

lacks the ability to distinguish between easy and

difficult-to-learn samples in frequency domain

intervals.

To address the above issues, this paper proposes

a FSFLoss function, as shown in Eq. (8) and Eq. (9).

Eq. (8) represents the error at frequency β and

normalizes across the batch and spatial dimensions,

ensuring that the difference between the true and

predicted values is at the same order of magnitude.

This helps resolve the issue that the majority of the

loss values come from the inherent frequency

domain of the sound source in the MSE-Loss

function.

Due to the different details contained in the

acoustic field, when the features are complex, the

difficulty of feature extraction between different

frequency domains will be greater, leading to a

decrease in reconstruction accuracy. Eq. (9)

adaptively measures the difficulty of training in

different frequency bands by considering the

Frobenius (F) norm of the difference between the

reconstructed velocity field and the true velocity

field for each frequency domain. As the F norm

increases, indicating a larger normalized error in the

reconstructed velocity field, the loss function

weight should be increased. Conversely, as the F

norm decreases, indicating a smaller normalized

error in the reconstructed velocity field, the loss

function weight can be reduced. This adaptive

mechanism allows the loss function to focus more

on learning hard-to-train samples in different

frequency domains, effectively implementing a

frequency-scaled attention mechanism.

(8)

(9)

where LFSβ is the normalized reconstructed MSE

loss function; LFSFβ is the FSFLoss function; µ is a

hyperparameter utilized to regulate the focus level

and is set to 0.5 in this paper.

2.3.2 Frequency scaled focal-KH regulariza-

tion term

The near-field acoustic reconstruction problem

delineates the inverse process of the radiated sound

field, whereas the KH equation describes the

positive process of the radiated sound field. The

near-field acoustic holography problem, utilizing

the equivalent source method, has shown that

physical prior information aids in the regularization

of near-field acoustic reconstruction. In light of this,

Olivieri et al.[21] proposed incorporating the discrete

form of the forward-propagating KH equation as

part of the loss function to exploit its regularization

effect. Eq. (10) represents the discrete form of the

KH equation in the free field.

(10)

where p(x1, y1, fa) represents the sound pressure

value at coordinates (x1, y1) in the radiation sound

field when the frequency is fa; denotes

the normal vibration velocity at fa at coordinates (xα,

yβ) on the reconstructed surface; ΔS stands for the

unit area of the reconstructed surface; Δz is the

distance from the holographic surface to the

reconstructed surface; c0 is the sound speed in the

propagating medium of sound field.

The reconstruction loss function based on the KH

equation involves calculating the mean squared

error between the velocity distribution obtained

from the 3D NCNN-NAH reconstruction and the

secondary reconstruction of the holographic surface

pressure derived using the KH equation. Therefore,

directly using their MSEs as the loss function

would lead to the dominance of the MSE values at

characteristic frequencies in the loss function. This

would similarly result in neglecting the

reconstruction effects in non-intrinsic frequency

bands and an inability to distinguish between easy-

to-train and difficult-to-train samples. Eq. (11)

Frequency/Hz

z
co

m
po

ne
nt

in
di

sp
la

ce
m

en
t

fi
el

d/
m

m

Fig. 8 Displacement of the reconstructed points on sound

source varies in frequency domain in training dataset
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represents two-norm of the reconstructed

holographic surface pressure calculated based on

the Kirchhoff-Helmholtz (KH) formula at

frequency β, normalized by the two-norm of the

true holographic surface sampling pressure values

at that frequency. Eq. (12) adaptively measures the

difficulty of training in different frequency bands

based on the Frobenius norm of the difference

between the reconstructed and true pressure fields.

An increase in the Frobenius norm indicates a

larger normalized error in the reconstructed

pressure field, necessitating an increase in the loss

function weight. Conversely, a decrease in the

Frobenius norm indicates a smaller normalized

error, allowing a reduction in the loss function

weight, thereby focusing the loss function on the

learning of hard-to-train samples in the frequency

domain—termed the frequency scaled focal-KH

Loss (FSF-KHLoss) function.

(11)

(12)

where LS-KH-β is the normalized KH loss function;

LFFS-KH-β is the FSF-KHLoss function; pKHGT
( fa = β )

represents the true pressure value at frequency β;

pKHPRED
( fa = β )represents the reconstructed pressure

value at frequency β.

In summary, the loss function L proposed in this

study for near-field acoustic reconstruction under

sparse sampling conditions within the super-

resolution framework 3D NCNN-NAH comprises

the FSFLoss function LFSF and the loss function

(LFFS-KH) with KH regularization term.

(13)

where A is the weight parameter used to regulate the

regularization effect of the physical prior

information.

3 Example verification

3.1 Building an acoustic vibration dataset

This study utilized the COMSOL Multiphysics

and Matlab to obtain the vibroacoustic responses of

thin panels under harmonic excitations at various

positions. These data are then employed as the

dataset for training and validating the performance

of the 3D NCNN-NAH method. The parameters of

the vibroacoustic model come from Reference [8].

After the model is established, the normal

vibrational velocity is sampled for the thin panel

(source) with a resolution of 32 × 32. A plane

located 80 mm away from the thin panel is selected

as the holographic surface, and the corresponding

sound pressure values are sampled with the same

resolution of 32×32. Given that the proposed

method is applicable to super-resolution problems,

the sound pressure obtained from the holographic

surface is downsampled by a factor of 4 using

uniform sampling, resulting in a final holographic

surface resolution of 8 × 8.

For each sampling point for vibrational velocity

on the sound-source thin plate, in this study

harmonic excitation is applied with an amplitude of

5 N. Each sample includes the vibroacoustic

velocity distribution of 191 × 1 × Ns × Ms and

sound pressure distribution of 191 × 1 × Nh × Mh in

the holographic surface, where 191 represents the

number of samples in the frequency domain

dimension with range (100, 2000, 10); 1 is the

PyTorch framework's channel dimension, generally

denoting the number of features. To construct the

dataset for the vibroacoustic model, an 8: 2 ratio is

employed to split it into training and testing

datasets.

Due to the non-uniformity in the distribution of

normal vibrational velocity-sound pressure within

different frequency domains, especially with large

values in the intrinsic feature region and significant

differences between peaks and valleys in the same

frequency domain, it is essential to normalize the

input within each frequency domain. Wang et al. [8]

proposed a novel normalization and regularization

method, performed normalization within each

frequency domain and subsequently applied

regularization across the entire frequency domain

range. Since this study uses the relative error form

of the LFSF and LFFS-KH function, i.e., considering the

non-uniformity between frequency domains within

the loss function, normalization is only conducted

within each frequency domain, as shown in Eq. (14).

Additionally, this normalization approach contributes

to a more regularized solution space, facilitating

faster convergence of the Adam gradient descent

algorithm.

(14)

where x and x∗ represent the physical quantities

before and after normalization, respectively; xmin

and xmax are the minimum and maximum values of

JI Y Y, et al. Near-field acoustic reconstruction method based on three-dimensional
N-shaped convolution neural network and frequency focal-KH regularization 8
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the data, respectively. In addition, considering the

varying levels of noises in the actual measurement

process, to enhance the model's robustness to

noises, this paper also randomly added noise with

signal-to-noise ratios ranging from 0 to 50 dB

during the training process of sound pressure of

sampling points on holographic surface. This was

done to simulate measurement noise, and this

method can be considered as a means of data

augmentation.

3.2 Model performance verification

To validate the performance of the acoustic

vibration model proposed in this paper, in this

section we employ the PyTorch framework to train

the dataset established in Section 3.1. The input for

the 3D NCNN-NAH comprises holographic-

domain and spatial-domain sampled signals of

acoustic pressure, while the output corresponds to

the super-resolved normal vibrational velocity of

the reconstructed source surface. For detailed

configurations, please refer to Section 2.1.

The relative error δ of the source reconstruction is

(15)

where vPRED is the normal vibrational velocity

obtained by the 3D NCNN-NAH reconstruction;

vGT is the true value of the normal vibrational

velocity obtained by the simulation.

Fig. 9 depicts the reconstruction results of 3D

NCNN-NAH in various frequency domains, with

the excitation source located at the center of the

length direction of the plate and one-fourth of the

plate width below in the width direction. As shown

in Fig. 9, 3D NCNN-NAH can accurately

reconstruct the high-resolution surface velocity

distribution of the sound source under low sampling

rate conditions, with reconstruction accuracy of

97.45%, 96.68%, 95.20%, 95.98%, 96.12%,

94.88% at frequencies of 300, 600, 900, 1 200,

1 500, 1 800 Hz, respectively. As the frequency

increases, the number of peaks and troughs in the

reconstructed surface velocity distribution also

increases, indicating higher complexity in its

features. Consequently, the reconstruction accuracy

slightly decreases with the increase in frequency

domain. However, at 1 800 Hz, the reconstruction

accuracy still reaches 94.8%, confirming the

effectiveness of the proposed 3D NCNN-NAH

framework and the loss function comprising LFSF

and LFFS-KH in this study.

NCNN-NAH
reconstruction

value

True value
of normal
vibration
velocity

NCNN-NAH
reconstruction

value

True value
of normal
vibration
velocity

Fig. 9 Comparison of theoretical velocity and reconstruction

effect from 3D NCNN-NAH in different frequencies

In this section, to further validate the reconstruc-

tion efficacy of 3D NCNN-NAH, the PV-NN model

proposed by Wang et al. [8] is compared with the

SRCNN model proposed by Olivieri et al. [20].

Specifically, the training parameters for the 3D

NCNN-NAH model and PV-NN model are adopted

from Reference [8], while those for the SRCNN

model are derived from Reference [20]. The PV-NN

model consists of two components: the first part

comprises an autoencoder for source velocity, and

the second part comprises a holography feature

extraction neural network (HFENN) obtained from

3D convolution stacking [8]. On the other hand,

SRCNN utilizes 2D convolution for feature

extraction in the spatial domain, followed by super-

resolution extension using U-NET[20]. To demonstrate

model performance across different frequency

domains, in this study we plot the reconstruction

errors of the validation set at various frequency

ranges, as illustrated in Fig. 10.

Fig. 10 shows that in the low-frequency range

(100-600 Hz) and mid-frequency range (600-
1200 Hz), the reconstruction errors of 3D NCNN-

NAH are lower than those of the other two

algorithms, with average reconstruction errors of

0.039 and 0.046, respectively. In the high-frequency

region, except for the region around 1 900 Hz, the

reconstruction errors of 3D NCNN-NAH are

relatively low, resulting in an average reconstruc-

tion error of 0.059.

As shown in Fig. 10, the reconstruction error of

SRCNN, which uses 2D convolution as the feature

9
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extractor, is significantly higher than those of

3DNCNN-NAH and PV-NN, both utilizing 3D

convolution. This difference is more pronounced in

the middle and high-frequency intervals. This

observation confirms that 3D convolution is more

effective in extracting features in the frequency

domain. In other words, leveraging features in the

frequency domain near a specific frequency can

compensate for the feature loss caused by sparse

spatial sampling.

The three algorithms exhibit a decline in

reconstruction accuracy as the frequency increases,

except for PV-NN, which demonstrates a peak error

below 150 Hz. Notably, the 3D NCNN-NAH

framework, introduced in this paper, stands out with

the smallest reconstruction error. Moreover, its error

increment with rising frequency is the smallest. As

analyzed in Section 3.3.1 below, this superior

performance of the framework is attributed to the

pre-encoder. Furthermore, the curve of 3D NCNN-

NAH in Fig. 10 appears smoother, validating the

efficacy of the frequency scaled focal mechanism in

focusing learning on the frequency bands with

lower reconstruction accuracy, as discussed in

Section 3.3.2 below.

3.3 Discussion and analysis of applica-

tion effects

3.3.1 Analysis on precoder effect

In addressing the super-resolution challenges in

near-field acoustic reconstruction, this paper

introduces a novel approach by incorporating a

precoder into the conventional encoder-decoder

structure. This results in a new architecture known

as the precoder-encoder-decoder N-type structure.

To validate the effectiveness of this structure, in this

section we conduct comparative analysis on the

reconstruction accuracy in the frequency domain

between the 3D NCNN-NAH N-type network

frame incorporating the precoder and the U-type

frame without the precoder. The training process is

conducted under the combined supervision of the

proposed loss function LFSF and the loss function

LFFS-KH. All other parameters are kept constant. The

comparison results are illustrated in Fig. 11.

Frequency/Hz

With precoder
Without precoder

Fig. 11 Comparison of reconstruction errors with and

without precoder in the frequency domain

As indicated by Fig. 11, the average reconstruc-

tion errors are 0.039 and 0.051 in the low-frequency

range (100-600 Hz), 0.046 and 0.063 in the

mid-frequency range (600-1 200 Hz), and 0.059

and 0.078 in the high-frequency range (1 200-
2000Hz), respectively.Therefore, theN-typestructure

(with a precoder) exhibits higher reconstruction

accuracy than the U-type structure (without a

precoder) across various frequency domains. This is

because that the pre-encoder, which performs

upsampling of the original features provides more

primitive fused features for subsequent encoders

and decoders. In contrast, the U-type structure lacks

a pre-encoder. The reconstruction accuracy is

decreased when the upsampling region of the

decoder exceeds the sampling resolution of the

holographic surface, resulting in a lack of fusion of

spatial and frequency domain local features.

Moreover, as the frequency domain increases, the

disadvantage of the U-type structure becomes more

apparent. Since the sound-vibration model contains

more features in spatial and adjacent frequency

domain ranges, the problem of reduced feature

fusion information due to the absence of the pre-

encoder will be more prominent in high-frequency

ranges.

3.3.2 Analysis on effectiveness of loss function

To validate the effectiveness of the loss function

proposed in this paper, in this section we compare

the reconstruction accuracy of the 3D NCNN-NAH

JI Y Y, et al. Near-field acoustic reconstruction method based on three-dimensional
N-shaped convolution neural network and frequency focal-KH regularization

Frequency/Hz

Fig. 10 Comparison of the reconstruction errors of 3D NCNN,

SR-CNN, PV-NN in frequency domains

10
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model trained under the combined supervision of

the loss function FSFLoss and the loss function

FSF-KHLoss, as detailed in Section 2.3, with that

of the model supervised by the mean square error

loss function (MSELoss).

As depicted in Fig. 12, in the low-frequency

range (100-600 Hz), the reconstruction errors

under the combined supervision of FSFLoss and

FFS-KHLoss (denoted as LFFS-KH) and under the

supervision of MSELoss are 0.039 and 0.041,

respectively. In the mid-frequency range (600-
1 200 Hz), the reconstruction errors are 0.046 and

0.049 respectively. In the high-frequency range

(1 200-2 000 Hz), the reconstruction errors are

0.059 and 0.088. Thus, it can be observed that the

accuracy is relatively close in the low- and mid-

frequency ranges, but in the high-frequency range,

the reconstruction error supervised by MSELoss is

higher. Namely in Eq. (9) and

in Eq. (12) are

larger in the high-frequency interval. Therefore,

"attention" should be paid to difficult-to-learn

samples in this range; while loss functions based on

attention mechanisms can learn them by focus,

increasing their weight in gradient descent. Hence,

the proposed loss function in this paper achieves

higher reconstruction accuracy in the high-

frequency range.

Frequency/Hz

and

Fig. 12 Comparison of reconstruction errors of NCNN-NAH

in frequency domain under combined supervision of

FSFLoss and FFS-KHLoss, and MSELoss supervision

Furthermore, this paper employs a loss function

incorporating normalized mean square error and the

Helmholtz regular term, enabling a more uniform

gradient descent on the reconstructed models within

the frequency band. Consequently, smoother

frequency-domain accuracy curves are obtained,

facilitating further reduction of reconstruction

errors in both intrinsic source feature intervals and

high-frequency regions.

It is worth noting that the Helmholtz regulariza-

tion term engages in a two-stage acoustic radiation

process from a physical perspective, namely the

inverse process of the near-field source reconstruc-

tion. This regularization mechanism contributes to

the regularization of deep neural network models,

not only aiding in error reduction but also

enhancing model stability and robustness.

3.3.3 Holographic surface sampling rate analysis

The holographic sampling rate stands as a crucial

factor affecting the cost of near-field source

reconstruction, and a decrease in the sampling rate

inevitably results in reduced accuracy in source

reconstruction. In this section, we analyze the

impact of hologram sampling rate on the

reconstruction accuracy of 3D NCNN-NAH.

Initially, hologram sampling points are set to 256,

144, 100, 64, 49, 36, corresponding to hologram

sampling rates of 16 × 16, 12 × 12, 10 × 10, 8 × 8, 7 ×

7, 6 × 6. Subsequently, the sampling number on

holography surface is individually trained and

tested while maintaining consistent settings for

other network parameters. Within the low- ,

medium- , and high-frequency ranges, the source

reconstruction errors of 3D NCNN-NAH model on

the validation set under different hologram

sampling rates are illustrated in Fig. 13.

Low frequency (100-600 Hz)
Mid-frequency (600-1 200 Hz)
High fequency (1 200-2 000 Hz)

Number of sampling numbers on holography surface

Fig. 13 The relationship between different sampling numbers

on holography surface and reconstruction error

Fig. 13 reveals the following observations: 1)

With an increase in sampling number on

holography surface, the reconstruction error

decreases. This is attributed to the augmented

hologram sampling rate providing the network with

more information for feature extraction, thereby

reducing source reconstruction error. 2) As the

sampling number increases, the decreasing trend of

reconstruction error gradually diminishes,

indicating that the feature extraction capability of

11
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the network approaches saturation. 3) Compared to

the medium- and low-frequency ranges, the

influence of hologram sampling rate on the high-

frequency range is more pronounced. This is

because source modalities in the high-frequency

region are more complex, leading to a more

intricate distribution of stimulated source velocities.

3.3.4 Effect of signal-to-noise ratio on recon-

struction accuracy

In practical engineering sampling, background

noise and measurement noise are often present. To

simulate real-world engineering scenarios, in this

section we introduce noises with signal-to-noise

ratio (SNR) ranging from 0 to 50 dB into the 3D

NCNN-NAH model for training and testing

purposes. Within the low- , medium- , high-

frequency ranges, the source reconstruction errors

of 3D NCNN-NAH under different SNR levels are

illustrated in Fig. 14.

Signal-to-noise ratio/dB

Low frequency (100-600 Hz)
Mid-frequency (600-1 200 Hz)
High fequency (1 200-2 000 Hz)

Fig. 14 The relationship between different SNRs

and reconstruction errors

From Fig. 14, it can be observed that: 1) As the

signal-to-noise ratio decreases, the proportion of

background noise increases, leading to a reduction

in the network's reconstruction accuracy. When the

signal-to-noise ratio exceeds 10 dB, the mean

reconstruction error in the 100-2 000 Hz range is

less than 0.1, indicating a certain level of robustness

in the 3D NCNN-NAH model. 2) Higher frequency

domains are more affected by noise, with a

reconstruction error as high as 0.187 in the high-

frequency range when the signal-to-noise ratio is

0 dB. 3) With decreasing signal-to-noise ratio, the

increasing trend of source reconstruction error

becomes more pronounced, indicating that the

robustness of 3D NCNN-NAH under low signal-to-

noise ratios still needs improvement. This may be

attributed to two factors: the low sampling rate on

holography surface limits the performance of the

network under high-noise conditions, necessitating

more sampling information to provide features;

under high-noise conditions, the feature extraction

capabilities of network are relatively limited.

4 Conclusion

In the real-world application of super-resolution

near-field acoustic reconstruction on ships, there

exists a challenge of significant reconstruction

errors under low sampling rate conditions. To

address this, in this paper we first design a three-

dimensional convolution-based N-type neural

network framework (3D NCNN-NAH), incorpor-

ating a pre-encoder structure, and introduces

residual structures, as well as DLA semantic

information fusion structures. Subsequently,

addressing the characteristics of near-field sound

source reconstruction problems, a frequency domain

attention mechanism is proposed, along with the

design of a loss function comprising frequency

scaled focal loss and the KH regularization term.

Finally, based on Matlab for secondary development

of COMSOL Multiphysics, a dataset is obtained,

and the 3D NCNN-NAH structure based on

frequency domain attention mechanism and

Helmholtz regularization is compared and analyzed

against SRCNN and PV-NN, validating the

effectiveness of the algorithm, leading to the

following conclusions:

1) The proposed 3D NCNN-NAH network, by

incorporating a pre-encoder structure and

employing a well-designed encoder and decoder

structure, enhances the reconstruction accuracy of

the normal vibration velocity under low holographic

sampling rate conditions in planar sound source

reconstruction problems, with a reconstruction error

of only 4.96% over the validation set in the 100-
2 000 Hz range.

2) The pre-encoder structure enables the feature

map size in the decoder to exceed the input size of

the feature layer, providing super-resolution point-

by-point information (also known as semantic

information) of the original sound field, thereby

increasing the model's representational capacity and

reducing reconstruction errors.

3) The attention mechanism effectively enhances

the reconstruction accuracy of the intrinsic feature

area and high-frequency region by adaptively

increasing the weight of hard-to-train samples

(generally the intrinsic feature area of sound

sources and high-frequency regions) within the loss

JI Y Y, et al. Near-field acoustic reconstruction method based on three-dimensional
N-shaped convolution neural network and frequency focal-KH regularization 12
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function or regularization term. By normalizing

mean squared error and Helmholtz regularization

term in the loss function, the problem of large

differences in absolute errors within the frequency

domain is alleviated, simplifying the data

processing. Therefore, the loss functions based on

frequency domain attention-normalized recon-

structed mean square error and Helmholtz

regularization term effectively improve the

performance of the 3D NCNN-NAH framework.
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基于三维N 型卷积神经网络和频域
注意力-亥姆霍兹正则化的近场声源重建方法

籍宇阳 1，2，王德禹*1，2

1 上海交通大学 海洋工程国家重点实验室，上海 200240

2 上海交通大学 海洋装备研究院，上海 200240

摘 要：［目的目的］针对全息面、低采样率条件下近场声源重建误差较大的问题，提出一种高分辨率、低误差的平

面声源表面法向振速重建的深度神经网络框架。［方法方法］首先，建立用于近场声源重建问题的三维 N 型卷积神

经网络框架（包含预编码器），通过提取空间声场频域内的特征，以弥补空间信息的稀疏性；然后，提出频域注意

力机制，设计包含频域注意力–归一化重建均方误差、亥姆霍兹正则项的损失函数，以自适应增加频域内难训

练样本的损失权重，从而提升声源在高频和本征特征区间的重建精度；最后，通过 Matlab 对 COMSOLMulti-

physics 软件进行二次开发，建立矩形薄板声振模型的训练集和测试集，开展对比验证。［结果结果］ 对比结果表

明，该方法在验证集上 100～2 000 Hz 内的平均重建误差仅为 4.96%，重建精度明显高于 SRCNN 和 PV-NN。

［结论结论］该研究成果可以降低近场声源重建实船应用中的全息面采样点数量，同时可保证较高的声源面法向振

速重建精度。

关键词：近场声源重建；声源识别；三维卷积；亥姆霍兹正则化
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